Step |
Hyp |
Ref |
Expression |
1 |
|
pwsplusgval.y |
|- Y = ( R ^s I ) |
2 |
|
pwsplusgval.b |
|- B = ( Base ` Y ) |
3 |
|
pwsplusgval.r |
|- ( ph -> R e. V ) |
4 |
|
pwsplusgval.i |
|- ( ph -> I e. W ) |
5 |
|
pwsplusgval.f |
|- ( ph -> F e. B ) |
6 |
|
pwsplusgval.g |
|- ( ph -> G e. B ) |
7 |
|
pwsmulrval.a |
|- .x. = ( .r ` R ) |
8 |
|
pwsmulrval.p |
|- .xb = ( .r ` Y ) |
9 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
10 |
|
eqid |
|- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
11 |
|
fvexd |
|- ( ph -> ( Scalar ` R ) e. _V ) |
12 |
|
fnconstg |
|- ( R e. V -> ( I X. { R } ) Fn I ) |
13 |
3 12
|
syl |
|- ( ph -> ( I X. { R } ) Fn I ) |
14 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
15 |
1 14
|
pwsval |
|- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
16 |
3 4 15
|
syl2anc |
|- ( ph -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
17 |
16
|
fveq2d |
|- ( ph -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
18 |
2 17
|
eqtrid |
|- ( ph -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
19 |
5 18
|
eleqtrd |
|- ( ph -> F e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
20 |
6 18
|
eleqtrd |
|- ( ph -> G e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
21 |
|
eqid |
|- ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
22 |
9 10 11 4 13 19 20 21
|
prdsmulrval |
|- ( ph -> ( F ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) G ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( ( I X. { R } ) ` x ) ) ( G ` x ) ) ) ) |
23 |
|
fvconst2g |
|- ( ( R e. V /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
24 |
3 23
|
sylan |
|- ( ( ph /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
25 |
24
|
fveq2d |
|- ( ( ph /\ x e. I ) -> ( .r ` ( ( I X. { R } ) ` x ) ) = ( .r ` R ) ) |
26 |
25 7
|
eqtr4di |
|- ( ( ph /\ x e. I ) -> ( .r ` ( ( I X. { R } ) ` x ) ) = .x. ) |
27 |
26
|
oveqd |
|- ( ( ph /\ x e. I ) -> ( ( F ` x ) ( .r ` ( ( I X. { R } ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) .x. ( G ` x ) ) ) |
28 |
27
|
mpteq2dva |
|- ( ph -> ( x e. I |-> ( ( F ` x ) ( .r ` ( ( I X. { R } ) ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) .x. ( G ` x ) ) ) ) |
29 |
22 28
|
eqtrd |
|- ( ph -> ( F ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) G ) = ( x e. I |-> ( ( F ` x ) .x. ( G ` x ) ) ) ) |
30 |
16
|
fveq2d |
|- ( ph -> ( .r ` Y ) = ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
31 |
8 30
|
eqtrid |
|- ( ph -> .xb = ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
32 |
31
|
oveqd |
|- ( ph -> ( F .xb G ) = ( F ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) G ) ) |
33 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. _V ) |
34 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( G ` x ) e. _V ) |
35 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
36 |
1 35 2 3 4 5
|
pwselbas |
|- ( ph -> F : I --> ( Base ` R ) ) |
37 |
36
|
feqmptd |
|- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
38 |
1 35 2 3 4 6
|
pwselbas |
|- ( ph -> G : I --> ( Base ` R ) ) |
39 |
38
|
feqmptd |
|- ( ph -> G = ( x e. I |-> ( G ` x ) ) ) |
40 |
4 33 34 37 39
|
offval2 |
|- ( ph -> ( F oF .x. G ) = ( x e. I |-> ( ( F ` x ) .x. ( G ` x ) ) ) ) |
41 |
29 32 40
|
3eqtr4d |
|- ( ph -> ( F .xb G ) = ( F oF .x. G ) ) |