Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | pwsn | |- ~P { A } = { (/) , { A } } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn | |- ( x C_ { A } <-> ( x = (/) \/ x = { A } ) ) |
|
2 | 1 | abbii | |- { x | x C_ { A } } = { x | ( x = (/) \/ x = { A } ) } |
3 | df-pw | |- ~P { A } = { x | x C_ { A } } |
|
4 | dfpr2 | |- { (/) , { A } } = { x | ( x = (/) \/ x = { A } ) } |
|
5 | 2 3 4 | 3eqtr4i | |- ~P { A } = { (/) , { A } } |