Metamath Proof Explorer


Theorem pwsn

Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006)

Ref Expression
Assertion pwsn
|- ~P { A } = { (/) , { A } }

Proof

Step Hyp Ref Expression
1 sssn
 |-  ( x C_ { A } <-> ( x = (/) \/ x = { A } ) )
2 1 abbii
 |-  { x | x C_ { A } } = { x | ( x = (/) \/ x = { A } ) }
3 df-pw
 |-  ~P { A } = { x | x C_ { A } }
4 dfpr2
 |-  { (/) , { A } } = { x | ( x = (/) \/ x = { A } ) }
5 2 3 4 3eqtr4i
 |-  ~P { A } = { (/) , { A } }