Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
|- ( x C_ { A } <-> A. y ( y e. x -> y e. { A } ) ) |
2 |
|
velsn |
|- ( y e. { A } <-> y = A ) |
3 |
2
|
imbi2i |
|- ( ( y e. x -> y e. { A } ) <-> ( y e. x -> y = A ) ) |
4 |
3
|
albii |
|- ( A. y ( y e. x -> y e. { A } ) <-> A. y ( y e. x -> y = A ) ) |
5 |
1 4
|
bitri |
|- ( x C_ { A } <-> A. y ( y e. x -> y = A ) ) |
6 |
|
neq0 |
|- ( -. x = (/) <-> E. y y e. x ) |
7 |
|
exintr |
|- ( A. y ( y e. x -> y = A ) -> ( E. y y e. x -> E. y ( y e. x /\ y = A ) ) ) |
8 |
6 7
|
syl5bi |
|- ( A. y ( y e. x -> y = A ) -> ( -. x = (/) -> E. y ( y e. x /\ y = A ) ) ) |
9 |
|
dfclel |
|- ( A e. x <-> E. y ( y = A /\ y e. x ) ) |
10 |
|
exancom |
|- ( E. y ( y = A /\ y e. x ) <-> E. y ( y e. x /\ y = A ) ) |
11 |
9 10
|
bitr2i |
|- ( E. y ( y e. x /\ y = A ) <-> A e. x ) |
12 |
|
snssi |
|- ( A e. x -> { A } C_ x ) |
13 |
11 12
|
sylbi |
|- ( E. y ( y e. x /\ y = A ) -> { A } C_ x ) |
14 |
8 13
|
syl6 |
|- ( A. y ( y e. x -> y = A ) -> ( -. x = (/) -> { A } C_ x ) ) |
15 |
5 14
|
sylbi |
|- ( x C_ { A } -> ( -. x = (/) -> { A } C_ x ) ) |
16 |
15
|
anc2li |
|- ( x C_ { A } -> ( -. x = (/) -> ( x C_ { A } /\ { A } C_ x ) ) ) |
17 |
|
eqss |
|- ( x = { A } <-> ( x C_ { A } /\ { A } C_ x ) ) |
18 |
16 17
|
syl6ibr |
|- ( x C_ { A } -> ( -. x = (/) -> x = { A } ) ) |
19 |
18
|
orrd |
|- ( x C_ { A } -> ( x = (/) \/ x = { A } ) ) |
20 |
|
0ss |
|- (/) C_ { A } |
21 |
|
sseq1 |
|- ( x = (/) -> ( x C_ { A } <-> (/) C_ { A } ) ) |
22 |
20 21
|
mpbiri |
|- ( x = (/) -> x C_ { A } ) |
23 |
|
eqimss |
|- ( x = { A } -> x C_ { A } ) |
24 |
22 23
|
jaoi |
|- ( ( x = (/) \/ x = { A } ) -> x C_ { A } ) |
25 |
19 24
|
impbii |
|- ( x C_ { A } <-> ( x = (/) \/ x = { A } ) ) |
26 |
25
|
abbii |
|- { x | x C_ { A } } = { x | ( x = (/) \/ x = { A } ) } |
27 |
|
df-pw |
|- ~P { A } = { x | x C_ { A } } |
28 |
|
dfpr2 |
|- { (/) , { A } } = { x | ( x = (/) \/ x = { A } ) } |
29 |
26 27 28
|
3eqtr4i |
|- ~P { A } = { (/) , { A } } |