| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwspjmhm.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | pwspjmhm.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> I e. V ) | 
						
							| 6 |  | fvexd |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( Scalar ` R ) e. _V ) | 
						
							| 7 |  | fconst6g |  |-  ( R e. Mnd -> ( I X. { R } ) : I --> Mnd ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( I X. { R } ) : I --> Mnd ) | 
						
							| 9 |  | simp3 |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> A e. I ) | 
						
							| 10 | 3 4 5 6 8 9 | prdspjmhm |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |-> ( x ` A ) ) e. ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) MndHom ( ( I X. { R } ) ` A ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 12 | 1 11 | pwsval |  |-  ( ( R e. Mnd /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 15 | 2 14 | eqtrid |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 16 | 15 | mpteq1d |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. B |-> ( x ` A ) ) = ( x e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |-> ( x ` A ) ) ) | 
						
							| 17 |  | fvconst2g |  |-  ( ( R e. Mnd /\ A e. I ) -> ( ( I X. { R } ) ` A ) = R ) | 
						
							| 18 | 17 | 3adant2 |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( ( I X. { R } ) ` A ) = R ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> R = ( ( I X. { R } ) ` A ) ) | 
						
							| 20 | 13 19 | oveq12d |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( Y MndHom R ) = ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) MndHom ( ( I X. { R } ) ` A ) ) ) | 
						
							| 21 | 10 16 20 | 3eltr4d |  |-  ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. B |-> ( x ` A ) ) e. ( Y MndHom R ) ) |