| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwspjmhmmgpd.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | pwspjmhmmgpd.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | pwspjmhmmgpd.m |  |-  M = ( mulGrp ` Y ) | 
						
							| 4 |  | pwspjmhmmgpd.t |  |-  T = ( mulGrp ` R ) | 
						
							| 5 |  | pwspjmhmmgpd.r |  |-  ( ph -> R e. Ring ) | 
						
							| 6 |  | pwspjmhmmgpd.i |  |-  ( ph -> I e. V ) | 
						
							| 7 |  | pwspjmhmmgpd.a |  |-  ( ph -> A e. I ) | 
						
							| 8 | 3 2 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 | 4 9 | mgpbas |  |-  ( Base ` R ) = ( Base ` T ) | 
						
							| 11 |  | eqid |  |-  ( .r ` Y ) = ( .r ` Y ) | 
						
							| 12 | 3 11 | mgpplusg |  |-  ( .r ` Y ) = ( +g ` M ) | 
						
							| 13 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 14 | 4 13 | mgpplusg |  |-  ( .r ` R ) = ( +g ` T ) | 
						
							| 15 |  | eqid |  |-  ( 1r ` Y ) = ( 1r ` Y ) | 
						
							| 16 | 3 15 | ringidval |  |-  ( 1r ` Y ) = ( 0g ` M ) | 
						
							| 17 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 18 | 4 17 | ringidval |  |-  ( 1r ` R ) = ( 0g ` T ) | 
						
							| 19 | 1 | pwsring |  |-  ( ( R e. Ring /\ I e. V ) -> Y e. Ring ) | 
						
							| 20 | 5 6 19 | syl2anc |  |-  ( ph -> Y e. Ring ) | 
						
							| 21 | 3 | ringmgp |  |-  ( Y e. Ring -> M e. Mnd ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> M e. Mnd ) | 
						
							| 23 | 4 | ringmgp |  |-  ( R e. Ring -> T e. Mnd ) | 
						
							| 24 | 5 23 | syl |  |-  ( ph -> T e. Mnd ) | 
						
							| 25 | 5 | adantr |  |-  ( ( ph /\ x e. B ) -> R e. Ring ) | 
						
							| 26 | 6 | adantr |  |-  ( ( ph /\ x e. B ) -> I e. V ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 28 | 1 9 2 25 26 27 | pwselbas |  |-  ( ( ph /\ x e. B ) -> x : I --> ( Base ` R ) ) | 
						
							| 29 | 7 | adantr |  |-  ( ( ph /\ x e. B ) -> A e. I ) | 
						
							| 30 | 28 29 | ffvelcdmd |  |-  ( ( ph /\ x e. B ) -> ( x ` A ) e. ( Base ` R ) ) | 
						
							| 31 | 30 | fmpttd |  |-  ( ph -> ( x e. B |-> ( x ` A ) ) : B --> ( Base ` R ) ) | 
						
							| 32 | 5 | adantr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> R e. Ring ) | 
						
							| 33 | 6 | adantr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> I e. V ) | 
						
							| 34 |  | simprl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. B ) | 
						
							| 35 |  | simprr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. B ) | 
						
							| 36 | 1 2 32 33 34 35 13 11 | pwsmulrval |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` Y ) b ) = ( a oF ( .r ` R ) b ) ) | 
						
							| 37 | 36 | fveq1d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a ( .r ` Y ) b ) ` A ) = ( ( a oF ( .r ` R ) b ) ` A ) ) | 
						
							| 38 | 1 9 2 32 33 34 | pwselbas |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> a : I --> ( Base ` R ) ) | 
						
							| 39 | 38 | ffnd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> a Fn I ) | 
						
							| 40 | 1 9 2 32 33 35 | pwselbas |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> b : I --> ( Base ` R ) ) | 
						
							| 41 | 40 | ffnd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> b Fn I ) | 
						
							| 42 |  | inidm |  |-  ( I i^i I ) = I | 
						
							| 43 |  | eqidd |  |-  ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( a ` A ) = ( a ` A ) ) | 
						
							| 44 |  | eqidd |  |-  ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( b ` A ) = ( b ` A ) ) | 
						
							| 45 | 39 41 33 33 42 43 44 | ofval |  |-  ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( ( a oF ( .r ` R ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) | 
						
							| 46 | 7 45 | mpidan |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a oF ( .r ` R ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) | 
						
							| 47 | 37 46 | eqtrd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a ( .r ` Y ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) | 
						
							| 48 | 2 11 | ringcl |  |-  ( ( Y e. Ring /\ a e. B /\ b e. B ) -> ( a ( .r ` Y ) b ) e. B ) | 
						
							| 49 | 20 48 | syl3an1 |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` Y ) b ) e. B ) | 
						
							| 50 | 49 | 3expb |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` Y ) b ) e. B ) | 
						
							| 51 |  | fveq1 |  |-  ( x = ( a ( .r ` Y ) b ) -> ( x ` A ) = ( ( a ( .r ` Y ) b ) ` A ) ) | 
						
							| 52 |  | eqid |  |-  ( x e. B |-> ( x ` A ) ) = ( x e. B |-> ( x ` A ) ) | 
						
							| 53 |  | fvex |  |-  ( ( a ( .r ` Y ) b ) ` A ) e. _V | 
						
							| 54 | 51 52 53 | fvmpt |  |-  ( ( a ( .r ` Y ) b ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( a ( .r ` Y ) b ) ` A ) ) | 
						
							| 55 | 50 54 | syl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( a ( .r ` Y ) b ) ` A ) ) | 
						
							| 56 |  | fveq1 |  |-  ( x = a -> ( x ` A ) = ( a ` A ) ) | 
						
							| 57 |  | fvex |  |-  ( a ` A ) e. _V | 
						
							| 58 | 56 52 57 | fvmpt |  |-  ( a e. B -> ( ( x e. B |-> ( x ` A ) ) ` a ) = ( a ` A ) ) | 
						
							| 59 | 34 58 | syl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` a ) = ( a ` A ) ) | 
						
							| 60 |  | fveq1 |  |-  ( x = b -> ( x ` A ) = ( b ` A ) ) | 
						
							| 61 |  | fvex |  |-  ( b ` A ) e. _V | 
						
							| 62 | 60 52 61 | fvmpt |  |-  ( b e. B -> ( ( x e. B |-> ( x ` A ) ) ` b ) = ( b ` A ) ) | 
						
							| 63 | 35 62 | syl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` b ) = ( b ` A ) ) | 
						
							| 64 | 59 63 | oveq12d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( ( x e. B |-> ( x ` A ) ) ` a ) ( .r ` R ) ( ( x e. B |-> ( x ` A ) ) ` b ) ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) | 
						
							| 65 | 47 55 64 | 3eqtr4d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( ( x e. B |-> ( x ` A ) ) ` a ) ( .r ` R ) ( ( x e. B |-> ( x ` A ) ) ` b ) ) ) | 
						
							| 66 | 2 15 | ringidcl |  |-  ( Y e. Ring -> ( 1r ` Y ) e. B ) | 
						
							| 67 |  | fveq1 |  |-  ( x = ( 1r ` Y ) -> ( x ` A ) = ( ( 1r ` Y ) ` A ) ) | 
						
							| 68 |  | fvex |  |-  ( ( 1r ` Y ) ` A ) e. _V | 
						
							| 69 | 67 52 68 | fvmpt |  |-  ( ( 1r ` Y ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( ( 1r ` Y ) ` A ) ) | 
						
							| 70 | 20 66 69 | 3syl |  |-  ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( ( 1r ` Y ) ` A ) ) | 
						
							| 71 | 1 17 | pws1 |  |-  ( ( R e. Ring /\ I e. V ) -> ( I X. { ( 1r ` R ) } ) = ( 1r ` Y ) ) | 
						
							| 72 | 5 6 71 | syl2anc |  |-  ( ph -> ( I X. { ( 1r ` R ) } ) = ( 1r ` Y ) ) | 
						
							| 73 | 72 | fveq1d |  |-  ( ph -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( ( 1r ` Y ) ` A ) ) | 
						
							| 74 |  | fvex |  |-  ( 1r ` R ) e. _V | 
						
							| 75 | 74 | fvconst2 |  |-  ( A e. I -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( 1r ` R ) ) | 
						
							| 76 | 7 75 | syl |  |-  ( ph -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( 1r ` R ) ) | 
						
							| 77 | 70 73 76 | 3eqtr2d |  |-  ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( 1r ` R ) ) | 
						
							| 78 | 8 10 12 14 16 18 22 24 31 65 77 | ismhmd |  |-  ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) |