Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwssb | |- ( A C_ ~P B <-> A. x e. A x C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwuni | |- ( A C_ ~P B <-> U. A C_ B ) |
|
| 2 | unissb | |- ( U. A C_ B <-> A. x e. A x C_ B ) |
|
| 3 | 1 2 | bitri | |- ( A C_ ~P B <-> A. x e. A x C_ B ) |