Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | pwssb | |- ( A C_ ~P B <-> A. x e. A x C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni | |- ( A C_ ~P B <-> U. A C_ B ) |
|
2 | unissb | |- ( U. A C_ B <-> A. x e. A x C_ B ) |
|
3 | 1 2 | bitri | |- ( A C_ ~P B <-> A. x e. A x C_ B ) |