Metamath Proof Explorer


Theorem pwssca

Description: The ring of scalars of a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssca.y
|- Y = ( R ^s I )
pwssca.s
|- S = ( Scalar ` R )
Assertion pwssca
|- ( ( R e. V /\ I e. W ) -> S = ( Scalar ` Y ) )

Proof

Step Hyp Ref Expression
1 pwssca.y
 |-  Y = ( R ^s I )
2 pwssca.s
 |-  S = ( Scalar ` R )
3 eqid
 |-  ( S Xs_ ( I X. { R } ) ) = ( S Xs_ ( I X. { R } ) )
4 2 fvexi
 |-  S e. _V
5 4 a1i
 |-  ( ( R e. V /\ I e. W ) -> S e. _V )
6 simpr
 |-  ( ( R e. V /\ I e. W ) -> I e. W )
7 snex
 |-  { R } e. _V
8 xpexg
 |-  ( ( I e. W /\ { R } e. _V ) -> ( I X. { R } ) e. _V )
9 6 7 8 sylancl
 |-  ( ( R e. V /\ I e. W ) -> ( I X. { R } ) e. _V )
10 3 5 9 prdssca
 |-  ( ( R e. V /\ I e. W ) -> S = ( Scalar ` ( S Xs_ ( I X. { R } ) ) ) )
11 1 2 pwsval
 |-  ( ( R e. V /\ I e. W ) -> Y = ( S Xs_ ( I X. { R } ) ) )
12 11 fveq2d
 |-  ( ( R e. V /\ I e. W ) -> ( Scalar ` Y ) = ( Scalar ` ( S Xs_ ( I X. { R } ) ) ) )
13 10 12 eqtr4d
 |-  ( ( R e. V /\ I e. W ) -> S = ( Scalar ` Y ) )