| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwssca.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwssca.s |
|- S = ( Scalar ` R ) |
| 3 |
|
eqid |
|- ( S Xs_ ( I X. { R } ) ) = ( S Xs_ ( I X. { R } ) ) |
| 4 |
2
|
fvexi |
|- S e. _V |
| 5 |
4
|
a1i |
|- ( ( R e. V /\ I e. W ) -> S e. _V ) |
| 6 |
|
simpr |
|- ( ( R e. V /\ I e. W ) -> I e. W ) |
| 7 |
|
snex |
|- { R } e. _V |
| 8 |
|
xpexg |
|- ( ( I e. W /\ { R } e. _V ) -> ( I X. { R } ) e. _V ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) e. _V ) |
| 10 |
3 5 9
|
prdssca |
|- ( ( R e. V /\ I e. W ) -> S = ( Scalar ` ( S Xs_ ( I X. { R } ) ) ) ) |
| 11 |
1 2
|
pwsval |
|- ( ( R e. V /\ I e. W ) -> Y = ( S Xs_ ( I X. { R } ) ) ) |
| 12 |
11
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` Y ) = ( Scalar ` ( S Xs_ ( I X. { R } ) ) ) ) |
| 13 |
10 12
|
eqtr4d |
|- ( ( R e. V /\ I e. W ) -> S = ( Scalar ` Y ) ) |