| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwssnf1o.y |  |-  Y = ( R ^s { I } ) | 
						
							| 2 |  | pwssnf1o.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | pwssnf1o.f |  |-  F = ( x e. B |-> ( { I } X. { x } ) ) | 
						
							| 4 |  | pwssnf1o.c |  |-  C = ( Base ` Y ) | 
						
							| 5 | 2 | fvexi |  |-  B e. _V | 
						
							| 6 |  | simpr |  |-  ( ( R e. V /\ I e. W ) -> I e. W ) | 
						
							| 7 | 3 | mapsnf1o |  |-  ( ( B e. _V /\ I e. W ) -> F : B -1-1-onto-> ( B ^m { I } ) ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( ( R e. V /\ I e. W ) -> F : B -1-1-onto-> ( B ^m { I } ) ) | 
						
							| 9 |  | snex |  |-  { I } e. _V | 
						
							| 10 | 1 2 | pwsbas |  |-  ( ( R e. V /\ { I } e. _V ) -> ( B ^m { I } ) = ( Base ` Y ) ) | 
						
							| 11 | 9 10 | mpan2 |  |-  ( R e. V -> ( B ^m { I } ) = ( Base ` Y ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( R e. V /\ I e. W ) -> ( B ^m { I } ) = ( Base ` Y ) ) | 
						
							| 13 | 4 12 | eqtr4id |  |-  ( ( R e. V /\ I e. W ) -> C = ( B ^m { I } ) ) | 
						
							| 14 | 13 | f1oeq3d |  |-  ( ( R e. V /\ I e. W ) -> ( F : B -1-1-onto-> C <-> F : B -1-1-onto-> ( B ^m { I } ) ) ) | 
						
							| 15 | 8 14 | mpbird |  |-  ( ( R e. V /\ I e. W ) -> F : B -1-1-onto-> C ) |