Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit1.y |
|- Y = ( W ^s U ) |
2 |
|
pwssplit1.z |
|- Z = ( W ^s V ) |
3 |
|
pwssplit1.b |
|- B = ( Base ` Y ) |
4 |
|
pwssplit1.c |
|- C = ( Base ` Z ) |
5 |
|
pwssplit1.f |
|- F = ( x e. B |-> ( x |` V ) ) |
6 |
|
eqid |
|- ( +g ` Y ) = ( +g ` Y ) |
7 |
|
eqid |
|- ( +g ` Z ) = ( +g ` Z ) |
8 |
|
simp1 |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> W e. Grp ) |
9 |
|
simp2 |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> U e. X ) |
10 |
1
|
pwsgrp |
|- ( ( W e. Grp /\ U e. X ) -> Y e. Grp ) |
11 |
8 9 10
|
syl2anc |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> Y e. Grp ) |
12 |
|
simp3 |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> V C_ U ) |
13 |
9 12
|
ssexd |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> V e. _V ) |
14 |
2
|
pwsgrp |
|- ( ( W e. Grp /\ V e. _V ) -> Z e. Grp ) |
15 |
8 13 14
|
syl2anc |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> Z e. Grp ) |
16 |
1 2 3 4 5
|
pwssplit0 |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> F : B --> C ) |
17 |
|
offres |
|- ( ( a e. B /\ b e. B ) -> ( ( a oF ( +g ` W ) b ) |` V ) = ( ( a |` V ) oF ( +g ` W ) ( b |` V ) ) ) |
18 |
17
|
adantl |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( ( a oF ( +g ` W ) b ) |` V ) = ( ( a |` V ) oF ( +g ` W ) ( b |` V ) ) ) |
19 |
8
|
adantr |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> W e. Grp ) |
20 |
|
simpl2 |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> U e. X ) |
21 |
|
simprl |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
22 |
|
simprr |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
23 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
24 |
1 3 19 20 21 22 23 6
|
pwsplusgval |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` Y ) b ) = ( a oF ( +g ` W ) b ) ) |
25 |
24
|
reseq1d |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( ( a ( +g ` Y ) b ) |` V ) = ( ( a oF ( +g ` W ) b ) |` V ) ) |
26 |
5
|
fvtresfn |
|- ( a e. B -> ( F ` a ) = ( a |` V ) ) |
27 |
5
|
fvtresfn |
|- ( b e. B -> ( F ` b ) = ( b |` V ) ) |
28 |
26 27
|
oveqan12d |
|- ( ( a e. B /\ b e. B ) -> ( ( F ` a ) oF ( +g ` W ) ( F ` b ) ) = ( ( a |` V ) oF ( +g ` W ) ( b |` V ) ) ) |
29 |
28
|
adantl |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) oF ( +g ` W ) ( F ` b ) ) = ( ( a |` V ) oF ( +g ` W ) ( b |` V ) ) ) |
30 |
18 25 29
|
3eqtr4d |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( ( a ( +g ` Y ) b ) |` V ) = ( ( F ` a ) oF ( +g ` W ) ( F ` b ) ) ) |
31 |
3 6
|
grpcl |
|- ( ( Y e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` Y ) b ) e. B ) |
32 |
31
|
3expb |
|- ( ( Y e. Grp /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` Y ) b ) e. B ) |
33 |
11 32
|
sylan |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` Y ) b ) e. B ) |
34 |
5
|
fvtresfn |
|- ( ( a ( +g ` Y ) b ) e. B -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( a ( +g ` Y ) b ) |` V ) ) |
35 |
33 34
|
syl |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( a ( +g ` Y ) b ) |` V ) ) |
36 |
13
|
adantr |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> V e. _V ) |
37 |
16
|
ffvelrnda |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ a e. B ) -> ( F ` a ) e. C ) |
38 |
37
|
adantrr |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( F ` a ) e. C ) |
39 |
16
|
ffvelrnda |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ b e. B ) -> ( F ` b ) e. C ) |
40 |
39
|
adantrl |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( F ` b ) e. C ) |
41 |
2 4 19 36 38 40 23 7
|
pwsplusgval |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( +g ` Z ) ( F ` b ) ) = ( ( F ` a ) oF ( +g ` W ) ( F ` b ) ) ) |
42 |
30 35 41
|
3eqtr4d |
|- ( ( ( W e. Grp /\ U e. X /\ V C_ U ) /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` Z ) ( F ` b ) ) ) |
43 |
3 4 6 7 11 15 16 42
|
isghmd |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> F e. ( Y GrpHom Z ) ) |