Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit1.y |
|- Y = ( W ^s U ) |
2 |
|
pwssplit1.z |
|- Z = ( W ^s V ) |
3 |
|
pwssplit1.b |
|- B = ( Base ` Y ) |
4 |
|
pwssplit1.c |
|- C = ( Base ` Z ) |
5 |
|
pwssplit1.f |
|- F = ( x e. B |-> ( x |` V ) ) |
6 |
|
eqid |
|- ( .s ` Y ) = ( .s ` Y ) |
7 |
|
eqid |
|- ( .s ` Z ) = ( .s ` Z ) |
8 |
|
eqid |
|- ( Scalar ` Y ) = ( Scalar ` Y ) |
9 |
|
eqid |
|- ( Scalar ` Z ) = ( Scalar ` Z ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` Y ) ) = ( Base ` ( Scalar ` Y ) ) |
11 |
|
simp1 |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> W e. LMod ) |
12 |
|
simp2 |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> U e. X ) |
13 |
1
|
pwslmod |
|- ( ( W e. LMod /\ U e. X ) -> Y e. LMod ) |
14 |
11 12 13
|
syl2anc |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> Y e. LMod ) |
15 |
|
simp3 |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> V C_ U ) |
16 |
12 15
|
ssexd |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> V e. _V ) |
17 |
2
|
pwslmod |
|- ( ( W e. LMod /\ V e. _V ) -> Z e. LMod ) |
18 |
11 16 17
|
syl2anc |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> Z e. LMod ) |
19 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
20 |
2 19
|
pwssca |
|- ( ( W e. LMod /\ V e. _V ) -> ( Scalar ` W ) = ( Scalar ` Z ) ) |
21 |
11 16 20
|
syl2anc |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Scalar ` W ) = ( Scalar ` Z ) ) |
22 |
1 19
|
pwssca |
|- ( ( W e. LMod /\ U e. X ) -> ( Scalar ` W ) = ( Scalar ` Y ) ) |
23 |
11 12 22
|
syl2anc |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Scalar ` W ) = ( Scalar ` Y ) ) |
24 |
21 23
|
eqtr3d |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Scalar ` Z ) = ( Scalar ` Y ) ) |
25 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
26 |
1 2 3 4 5
|
pwssplit2 |
|- ( ( W e. Grp /\ U e. X /\ V C_ U ) -> F e. ( Y GrpHom Z ) ) |
27 |
25 26
|
syl3an1 |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> F e. ( Y GrpHom Z ) ) |
28 |
|
snex |
|- { a } e. _V |
29 |
|
xpexg |
|- ( ( U e. X /\ { a } e. _V ) -> ( U X. { a } ) e. _V ) |
30 |
12 28 29
|
sylancl |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( U X. { a } ) e. _V ) |
31 |
|
vex |
|- b e. _V |
32 |
|
offres |
|- ( ( ( U X. { a } ) e. _V /\ b e. _V ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) ) |
33 |
30 31 32
|
sylancl |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) ) |
34 |
33
|
adantr |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) ) |
35 |
|
xpssres |
|- ( V C_ U -> ( ( U X. { a } ) |` V ) = ( V X. { a } ) ) |
36 |
35
|
3ad2ant3 |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( ( U X. { a } ) |` V ) = ( V X. { a } ) ) |
37 |
36
|
adantr |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( U X. { a } ) |` V ) = ( V X. { a } ) ) |
38 |
37
|
oveq1d |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( ( U X. { a } ) |` V ) oF ( .s ` W ) ( b |` V ) ) = ( ( V X. { a } ) oF ( .s ` W ) ( b |` V ) ) ) |
39 |
34 38
|
eqtrd |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) = ( ( V X. { a } ) oF ( .s ` W ) ( b |` V ) ) ) |
40 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
41 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
42 |
|
simpl1 |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> W e. LMod ) |
43 |
|
simpl2 |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> U e. X ) |
44 |
23
|
fveq2d |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` Y ) ) ) |
45 |
44
|
eleq2d |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> ( a e. ( Base ` ( Scalar ` W ) ) <-> a e. ( Base ` ( Scalar ` Y ) ) ) ) |
46 |
45
|
biimpar |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ a e. ( Base ` ( Scalar ` Y ) ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
47 |
46
|
adantrr |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
48 |
|
simprr |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> b e. B ) |
49 |
1 3 40 6 19 41 42 43 47 48
|
pwsvscafval |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) b ) = ( ( U X. { a } ) oF ( .s ` W ) b ) ) |
50 |
49
|
reseq1d |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( a ( .s ` Y ) b ) |` V ) = ( ( ( U X. { a } ) oF ( .s ` W ) b ) |` V ) ) |
51 |
5
|
fvtresfn |
|- ( b e. B -> ( F ` b ) = ( b |` V ) ) |
52 |
51
|
ad2antll |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` b ) = ( b |` V ) ) |
53 |
52
|
oveq2d |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( V X. { a } ) oF ( .s ` W ) ( F ` b ) ) = ( ( V X. { a } ) oF ( .s ` W ) ( b |` V ) ) ) |
54 |
39 50 53
|
3eqtr4d |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( ( a ( .s ` Y ) b ) |` V ) = ( ( V X. { a } ) oF ( .s ` W ) ( F ` b ) ) ) |
55 |
3 8 6 10
|
lmodvscl |
|- ( ( Y e. LMod /\ a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) -> ( a ( .s ` Y ) b ) e. B ) |
56 |
55
|
3expb |
|- ( ( Y e. LMod /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) b ) e. B ) |
57 |
14 56
|
sylan |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) b ) e. B ) |
58 |
5
|
fvtresfn |
|- ( ( a ( .s ` Y ) b ) e. B -> ( F ` ( a ( .s ` Y ) b ) ) = ( ( a ( .s ` Y ) b ) |` V ) ) |
59 |
57 58
|
syl |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` Y ) b ) ) = ( ( a ( .s ` Y ) b ) |` V ) ) |
60 |
16
|
adantr |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> V e. _V ) |
61 |
1 2 3 4 5
|
pwssplit0 |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> F : B --> C ) |
62 |
61
|
ffvelrnda |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ b e. B ) -> ( F ` b ) e. C ) |
63 |
62
|
adantrl |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` b ) e. C ) |
64 |
2 4 40 7 19 41 42 60 47 63
|
pwsvscafval |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( a ( .s ` Z ) ( F ` b ) ) = ( ( V X. { a } ) oF ( .s ` W ) ( F ` b ) ) ) |
65 |
54 59 64
|
3eqtr4d |
|- ( ( ( W e. LMod /\ U e. X /\ V C_ U ) /\ ( a e. ( Base ` ( Scalar ` Y ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` Y ) b ) ) = ( a ( .s ` Z ) ( F ` b ) ) ) |
66 |
3 6 7 8 9 10 14 18 24 27 65
|
islmhmd |
|- ( ( W e. LMod /\ U e. X /\ V C_ U ) -> F e. ( Y LMHom Z ) ) |