Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit4.e |
|- E = ( R ^s ( A u. B ) ) |
2 |
|
pwssplit4.g |
|- G = ( Base ` E ) |
3 |
|
pwssplit4.z |
|- .0. = ( 0g ` R ) |
4 |
|
pwssplit4.k |
|- K = { y e. G | ( y |` A ) = ( A X. { .0. } ) } |
5 |
|
pwssplit4.f |
|- F = ( x e. K |-> ( x |` B ) ) |
6 |
|
pwssplit4.c |
|- C = ( R ^s A ) |
7 |
|
pwssplit4.d |
|- D = ( R ^s B ) |
8 |
|
pwssplit4.l |
|- L = ( E |`s K ) |
9 |
|
ssrab2 |
|- { y e. G | ( y |` A ) = ( A X. { .0. } ) } C_ G |
10 |
4 9
|
eqsstri |
|- K C_ G |
11 |
|
resmpt |
|- ( K C_ G -> ( ( x e. G |-> ( x |` B ) ) |` K ) = ( x e. K |-> ( x |` B ) ) ) |
12 |
10 11
|
ax-mp |
|- ( ( x e. G |-> ( x |` B ) ) |` K ) = ( x e. K |-> ( x |` B ) ) |
13 |
5 12
|
eqtr4i |
|- F = ( ( x e. G |-> ( x |` B ) ) |` K ) |
14 |
|
ssun2 |
|- B C_ ( A u. B ) |
15 |
14
|
a1i |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> B C_ ( A u. B ) ) |
16 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
17 |
|
eqid |
|- ( x e. G |-> ( x |` B ) ) = ( x e. G |-> ( x |` B ) ) |
18 |
1 7 2 16 17
|
pwssplit3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ B C_ ( A u. B ) ) -> ( x e. G |-> ( x |` B ) ) e. ( E LMHom D ) ) |
19 |
15 18
|
syld3an3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( x e. G |-> ( x |` B ) ) e. ( E LMHom D ) ) |
20 |
|
simp1 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> R e. LMod ) |
21 |
|
lmodgrp |
|- ( R e. LMod -> R e. Grp ) |
22 |
|
grpmnd |
|- ( R e. Grp -> R e. Mnd ) |
23 |
20 21 22
|
3syl |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> R e. Mnd ) |
24 |
|
ssun1 |
|- A C_ ( A u. B ) |
25 |
|
ssexg |
|- ( ( A C_ ( A u. B ) /\ ( A u. B ) e. V ) -> A e. _V ) |
26 |
24 25
|
mpan |
|- ( ( A u. B ) e. V -> A e. _V ) |
27 |
26
|
3ad2ant2 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> A e. _V ) |
28 |
6 3
|
pws0g |
|- ( ( R e. Mnd /\ A e. _V ) -> ( A X. { .0. } ) = ( 0g ` C ) ) |
29 |
23 27 28
|
syl2anc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( A X. { .0. } ) = ( 0g ` C ) ) |
30 |
29
|
eqeq2d |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( y |` A ) = ( A X. { .0. } ) <-> ( y |` A ) = ( 0g ` C ) ) ) |
31 |
30
|
rabbidv |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> { y e. G | ( y |` A ) = ( A X. { .0. } ) } = { y e. G | ( y |` A ) = ( 0g ` C ) } ) |
32 |
4 31
|
eqtrid |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> K = { y e. G | ( y |` A ) = ( 0g ` C ) } ) |
33 |
24
|
a1i |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> A C_ ( A u. B ) ) |
34 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
35 |
|
eqid |
|- ( y e. G |-> ( y |` A ) ) = ( y e. G |-> ( y |` A ) ) |
36 |
1 6 2 34 35
|
pwssplit3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ A C_ ( A u. B ) ) -> ( y e. G |-> ( y |` A ) ) e. ( E LMHom C ) ) |
37 |
33 36
|
syld3an3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( y e. G |-> ( y |` A ) ) e. ( E LMHom C ) ) |
38 |
|
fvex |
|- ( 0g ` C ) e. _V |
39 |
35
|
mptiniseg |
|- ( ( 0g ` C ) e. _V -> ( `' ( y e. G |-> ( y |` A ) ) " { ( 0g ` C ) } ) = { y e. G | ( y |` A ) = ( 0g ` C ) } ) |
40 |
38 39
|
ax-mp |
|- ( `' ( y e. G |-> ( y |` A ) ) " { ( 0g ` C ) } ) = { y e. G | ( y |` A ) = ( 0g ` C ) } |
41 |
40
|
eqcomi |
|- { y e. G | ( y |` A ) = ( 0g ` C ) } = ( `' ( y e. G |-> ( y |` A ) ) " { ( 0g ` C ) } ) |
42 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
43 |
|
eqid |
|- ( LSubSp ` E ) = ( LSubSp ` E ) |
44 |
41 42 43
|
lmhmkerlss |
|- ( ( y e. G |-> ( y |` A ) ) e. ( E LMHom C ) -> { y e. G | ( y |` A ) = ( 0g ` C ) } e. ( LSubSp ` E ) ) |
45 |
37 44
|
syl |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> { y e. G | ( y |` A ) = ( 0g ` C ) } e. ( LSubSp ` E ) ) |
46 |
32 45
|
eqeltrd |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> K e. ( LSubSp ` E ) ) |
47 |
43 8
|
reslmhm |
|- ( ( ( x e. G |-> ( x |` B ) ) e. ( E LMHom D ) /\ K e. ( LSubSp ` E ) ) -> ( ( x e. G |-> ( x |` B ) ) |` K ) e. ( L LMHom D ) ) |
48 |
19 46 47
|
syl2anc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( x e. G |-> ( x |` B ) ) |` K ) e. ( L LMHom D ) ) |
49 |
13 48
|
eqeltrid |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F e. ( L LMHom D ) ) |
50 |
5
|
fvtresfn |
|- ( a e. K -> ( F ` a ) = ( a |` B ) ) |
51 |
|
ssexg |
|- ( ( B C_ ( A u. B ) /\ ( A u. B ) e. V ) -> B e. _V ) |
52 |
14 51
|
mpan |
|- ( ( A u. B ) e. V -> B e. _V ) |
53 |
52
|
3ad2ant2 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> B e. _V ) |
54 |
7 3
|
pws0g |
|- ( ( R e. Mnd /\ B e. _V ) -> ( B X. { .0. } ) = ( 0g ` D ) ) |
55 |
23 53 54
|
syl2anc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( B X. { .0. } ) = ( 0g ` D ) ) |
56 |
55
|
eqcomd |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( 0g ` D ) = ( B X. { .0. } ) ) |
57 |
50 56
|
eqeqan12rd |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. K ) -> ( ( F ` a ) = ( 0g ` D ) <-> ( a |` B ) = ( B X. { .0. } ) ) ) |
58 |
|
reseq1 |
|- ( y = a -> ( y |` A ) = ( a |` A ) ) |
59 |
58
|
eqeq1d |
|- ( y = a -> ( ( y |` A ) = ( A X. { .0. } ) <-> ( a |` A ) = ( A X. { .0. } ) ) ) |
60 |
59 4
|
elrab2 |
|- ( a e. K <-> ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) ) |
61 |
|
uneq12 |
|- ( ( ( a |` A ) = ( A X. { .0. } ) /\ ( a |` B ) = ( B X. { .0. } ) ) -> ( ( a |` A ) u. ( a |` B ) ) = ( ( A X. { .0. } ) u. ( B X. { .0. } ) ) ) |
62 |
|
resundi |
|- ( a |` ( A u. B ) ) = ( ( a |` A ) u. ( a |` B ) ) |
63 |
|
xpundir |
|- ( ( A u. B ) X. { .0. } ) = ( ( A X. { .0. } ) u. ( B X. { .0. } ) ) |
64 |
61 62 63
|
3eqtr4g |
|- ( ( ( a |` A ) = ( A X. { .0. } ) /\ ( a |` B ) = ( B X. { .0. } ) ) -> ( a |` ( A u. B ) ) = ( ( A u. B ) X. { .0. } ) ) |
65 |
64
|
adantll |
|- ( ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) -> ( a |` ( A u. B ) ) = ( ( A u. B ) X. { .0. } ) ) |
66 |
65
|
adantl |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( a |` ( A u. B ) ) = ( ( A u. B ) X. { .0. } ) ) |
67 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
68 |
|
simpl1 |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> R e. LMod ) |
69 |
|
simp2 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( A u. B ) e. V ) |
70 |
69
|
adantr |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( A u. B ) e. V ) |
71 |
|
simprll |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> a e. G ) |
72 |
1 67 2 68 70 71
|
pwselbas |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> a : ( A u. B ) --> ( Base ` R ) ) |
73 |
|
ffn |
|- ( a : ( A u. B ) --> ( Base ` R ) -> a Fn ( A u. B ) ) |
74 |
|
fnresdm |
|- ( a Fn ( A u. B ) -> ( a |` ( A u. B ) ) = a ) |
75 |
72 73 74
|
3syl |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( a |` ( A u. B ) ) = a ) |
76 |
1 3
|
pws0g |
|- ( ( R e. Mnd /\ ( A u. B ) e. V ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` E ) ) |
77 |
23 69 76
|
syl2anc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` E ) ) |
78 |
1
|
pwslmod |
|- ( ( R e. LMod /\ ( A u. B ) e. V ) -> E e. LMod ) |
79 |
78
|
3adant3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> E e. LMod ) |
80 |
43
|
lsssubg |
|- ( ( E e. LMod /\ K e. ( LSubSp ` E ) ) -> K e. ( SubGrp ` E ) ) |
81 |
79 46 80
|
syl2anc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> K e. ( SubGrp ` E ) ) |
82 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
83 |
8 82
|
subg0 |
|- ( K e. ( SubGrp ` E ) -> ( 0g ` E ) = ( 0g ` L ) ) |
84 |
81 83
|
syl |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( 0g ` E ) = ( 0g ` L ) ) |
85 |
77 84
|
eqtrd |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` L ) ) |
86 |
85
|
adantr |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> ( ( A u. B ) X. { .0. } ) = ( 0g ` L ) ) |
87 |
66 75 86
|
3eqtr3d |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) /\ ( a |` B ) = ( B X. { .0. } ) ) ) -> a = ( 0g ` L ) ) |
88 |
87
|
exp32 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( a e. G /\ ( a |` A ) = ( A X. { .0. } ) ) -> ( ( a |` B ) = ( B X. { .0. } ) -> a = ( 0g ` L ) ) ) ) |
89 |
60 88
|
syl5bi |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( a e. K -> ( ( a |` B ) = ( B X. { .0. } ) -> a = ( 0g ` L ) ) ) ) |
90 |
89
|
imp |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. K ) -> ( ( a |` B ) = ( B X. { .0. } ) -> a = ( 0g ` L ) ) ) |
91 |
57 90
|
sylbid |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. K ) -> ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) |
92 |
91
|
ralrimiva |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> A. a e. K ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) |
93 |
|
lmghm |
|- ( F e. ( L LMHom D ) -> F e. ( L GrpHom D ) ) |
94 |
8 2
|
ressbas2 |
|- ( K C_ G -> K = ( Base ` L ) ) |
95 |
10 94
|
ax-mp |
|- K = ( Base ` L ) |
96 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
97 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
98 |
95 16 96 97
|
ghmf1 |
|- ( F e. ( L GrpHom D ) -> ( F : K -1-1-> ( Base ` D ) <-> A. a e. K ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) ) |
99 |
49 93 98
|
3syl |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( F : K -1-1-> ( Base ` D ) <-> A. a e. K ( ( F ` a ) = ( 0g ` D ) -> a = ( 0g ` L ) ) ) ) |
100 |
92 99
|
mpbird |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F : K -1-1-> ( Base ` D ) ) |
101 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
102 |
101 16
|
lmhmf |
|- ( F e. ( L LMHom D ) -> F : ( Base ` L ) --> ( Base ` D ) ) |
103 |
|
frn |
|- ( F : ( Base ` L ) --> ( Base ` D ) -> ran F C_ ( Base ` D ) ) |
104 |
49 102 103
|
3syl |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ran F C_ ( Base ` D ) ) |
105 |
|
reseq1 |
|- ( x = ( a u. ( A X. { .0. } ) ) -> ( x |` B ) = ( ( a u. ( A X. { .0. } ) ) |` B ) ) |
106 |
7 67 16
|
pwselbasb |
|- ( ( R e. LMod /\ B e. _V ) -> ( a e. ( Base ` D ) <-> a : B --> ( Base ` R ) ) ) |
107 |
20 53 106
|
syl2anc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( a e. ( Base ` D ) <-> a : B --> ( Base ` R ) ) ) |
108 |
107
|
biimpa |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> a : B --> ( Base ` R ) ) |
109 |
3
|
fvexi |
|- .0. e. _V |
110 |
109
|
fconst |
|- ( A X. { .0. } ) : A --> { .0. } |
111 |
110
|
a1i |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( A X. { .0. } ) : A --> { .0. } ) |
112 |
23
|
adantr |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> R e. Mnd ) |
113 |
67 3
|
mndidcl |
|- ( R e. Mnd -> .0. e. ( Base ` R ) ) |
114 |
112 113
|
syl |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> .0. e. ( Base ` R ) ) |
115 |
114
|
snssd |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> { .0. } C_ ( Base ` R ) ) |
116 |
111 115
|
fssd |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( A X. { .0. } ) : A --> ( Base ` R ) ) |
117 |
|
incom |
|- ( B i^i A ) = ( A i^i B ) |
118 |
|
simp3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( A i^i B ) = (/) ) |
119 |
117 118
|
eqtrid |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( B i^i A ) = (/) ) |
120 |
119
|
adantr |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( B i^i A ) = (/) ) |
121 |
|
fun |
|- ( ( ( a : B --> ( Base ` R ) /\ ( A X. { .0. } ) : A --> ( Base ` R ) ) /\ ( B i^i A ) = (/) ) -> ( a u. ( A X. { .0. } ) ) : ( B u. A ) --> ( ( Base ` R ) u. ( Base ` R ) ) ) |
122 |
108 116 120 121
|
syl21anc |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) : ( B u. A ) --> ( ( Base ` R ) u. ( Base ` R ) ) ) |
123 |
|
uncom |
|- ( B u. A ) = ( A u. B ) |
124 |
|
unidm |
|- ( ( Base ` R ) u. ( Base ` R ) ) = ( Base ` R ) |
125 |
123 124
|
feq23i |
|- ( ( a u. ( A X. { .0. } ) ) : ( B u. A ) --> ( ( Base ` R ) u. ( Base ` R ) ) <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) |
126 |
122 125
|
sylib |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) |
127 |
1 67 2
|
pwselbasb |
|- ( ( R e. LMod /\ ( A u. B ) e. V ) -> ( ( a u. ( A X. { .0. } ) ) e. G <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) ) |
128 |
127
|
3adant3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( a u. ( A X. { .0. } ) ) e. G <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) ) |
129 |
128
|
adantr |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) e. G <-> ( a u. ( A X. { .0. } ) ) : ( A u. B ) --> ( Base ` R ) ) ) |
130 |
126 129
|
mpbird |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) e. G ) |
131 |
|
simpl3 |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( A i^i B ) = (/) ) |
132 |
117 131
|
eqtrid |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( B i^i A ) = (/) ) |
133 |
|
ffn |
|- ( a : B --> ( Base ` R ) -> a Fn B ) |
134 |
|
fnresdisj |
|- ( a Fn B -> ( ( B i^i A ) = (/) <-> ( a |` A ) = (/) ) ) |
135 |
108 133 134
|
3syl |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( B i^i A ) = (/) <-> ( a |` A ) = (/) ) ) |
136 |
132 135
|
mpbid |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a |` A ) = (/) ) |
137 |
|
fnconstg |
|- ( .0. e. _V -> ( A X. { .0. } ) Fn A ) |
138 |
|
fnresdm |
|- ( ( A X. { .0. } ) Fn A -> ( ( A X. { .0. } ) |` A ) = ( A X. { .0. } ) ) |
139 |
109 137 138
|
mp2b |
|- ( ( A X. { .0. } ) |` A ) = ( A X. { .0. } ) |
140 |
139
|
a1i |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( A X. { .0. } ) |` A ) = ( A X. { .0. } ) ) |
141 |
136 140
|
uneq12d |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a |` A ) u. ( ( A X. { .0. } ) |` A ) ) = ( (/) u. ( A X. { .0. } ) ) ) |
142 |
|
resundir |
|- ( ( a u. ( A X. { .0. } ) ) |` A ) = ( ( a |` A ) u. ( ( A X. { .0. } ) |` A ) ) |
143 |
|
uncom |
|- ( (/) u. ( A X. { .0. } ) ) = ( ( A X. { .0. } ) u. (/) ) |
144 |
|
un0 |
|- ( ( A X. { .0. } ) u. (/) ) = ( A X. { .0. } ) |
145 |
143 144
|
eqtr2i |
|- ( A X. { .0. } ) = ( (/) u. ( A X. { .0. } ) ) |
146 |
141 142 145
|
3eqtr4g |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) |` A ) = ( A X. { .0. } ) ) |
147 |
|
reseq1 |
|- ( y = ( a u. ( A X. { .0. } ) ) -> ( y |` A ) = ( ( a u. ( A X. { .0. } ) ) |` A ) ) |
148 |
147
|
eqeq1d |
|- ( y = ( a u. ( A X. { .0. } ) ) -> ( ( y |` A ) = ( A X. { .0. } ) <-> ( ( a u. ( A X. { .0. } ) ) |` A ) = ( A X. { .0. } ) ) ) |
149 |
148 4
|
elrab2 |
|- ( ( a u. ( A X. { .0. } ) ) e. K <-> ( ( a u. ( A X. { .0. } ) ) e. G /\ ( ( a u. ( A X. { .0. } ) ) |` A ) = ( A X. { .0. } ) ) ) |
150 |
130 146 149
|
sylanbrc |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a u. ( A X. { .0. } ) ) e. K ) |
151 |
130
|
resexd |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) |` B ) e. _V ) |
152 |
5 105 150 151
|
fvmptd3 |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) = ( ( a u. ( A X. { .0. } ) ) |` B ) ) |
153 |
|
resundir |
|- ( ( a u. ( A X. { .0. } ) ) |` B ) = ( ( a |` B ) u. ( ( A X. { .0. } ) |` B ) ) |
154 |
|
fnresdm |
|- ( a Fn B -> ( a |` B ) = a ) |
155 |
108 133 154
|
3syl |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( a |` B ) = a ) |
156 |
|
ffn |
|- ( ( A X. { .0. } ) : A --> { .0. } -> ( A X. { .0. } ) Fn A ) |
157 |
|
fnresdisj |
|- ( ( A X. { .0. } ) Fn A -> ( ( A i^i B ) = (/) <-> ( ( A X. { .0. } ) |` B ) = (/) ) ) |
158 |
110 156 157
|
mp2b |
|- ( ( A i^i B ) = (/) <-> ( ( A X. { .0. } ) |` B ) = (/) ) |
159 |
158
|
biimpi |
|- ( ( A i^i B ) = (/) -> ( ( A X. { .0. } ) |` B ) = (/) ) |
160 |
159
|
3ad2ant3 |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ( ( A X. { .0. } ) |` B ) = (/) ) |
161 |
160
|
adantr |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( A X. { .0. } ) |` B ) = (/) ) |
162 |
155 161
|
uneq12d |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a |` B ) u. ( ( A X. { .0. } ) |` B ) ) = ( a u. (/) ) ) |
163 |
|
un0 |
|- ( a u. (/) ) = a |
164 |
162 163
|
eqtrdi |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a |` B ) u. ( ( A X. { .0. } ) |` B ) ) = a ) |
165 |
153 164
|
eqtrid |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( ( a u. ( A X. { .0. } ) ) |` B ) = a ) |
166 |
152 165
|
eqtrd |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) = a ) |
167 |
95 16
|
lmhmf |
|- ( F e. ( L LMHom D ) -> F : K --> ( Base ` D ) ) |
168 |
|
ffn |
|- ( F : K --> ( Base ` D ) -> F Fn K ) |
169 |
49 167 168
|
3syl |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F Fn K ) |
170 |
169
|
adantr |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> F Fn K ) |
171 |
|
fnfvelrn |
|- ( ( F Fn K /\ ( a u. ( A X. { .0. } ) ) e. K ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) e. ran F ) |
172 |
170 150 171
|
syl2anc |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> ( F ` ( a u. ( A X. { .0. } ) ) ) e. ran F ) |
173 |
166 172
|
eqeltrrd |
|- ( ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) /\ a e. ( Base ` D ) ) -> a e. ran F ) |
174 |
104 173
|
eqelssd |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> ran F = ( Base ` D ) ) |
175 |
|
dff1o5 |
|- ( F : K -1-1-onto-> ( Base ` D ) <-> ( F : K -1-1-> ( Base ` D ) /\ ran F = ( Base ` D ) ) ) |
176 |
100 174 175
|
sylanbrc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F : K -1-1-onto-> ( Base ` D ) ) |
177 |
95 16
|
islmim |
|- ( F e. ( L LMIso D ) <-> ( F e. ( L LMHom D ) /\ F : K -1-1-onto-> ( Base ` D ) ) ) |
178 |
49 176 177
|
sylanbrc |
|- ( ( R e. LMod /\ ( A u. B ) e. V /\ ( A i^i B ) = (/) ) -> F e. ( L LMIso D ) ) |