Step |
Hyp |
Ref |
Expression |
1 |
|
pwsval.y |
|- Y = ( R ^s I ) |
2 |
|
pwsval.f |
|- F = ( Scalar ` R ) |
3 |
|
elex |
|- ( R e. V -> R e. _V ) |
4 |
|
elex |
|- ( I e. W -> I e. _V ) |
5 |
|
simpl |
|- ( ( r = R /\ i = I ) -> r = R ) |
6 |
5
|
fveq2d |
|- ( ( r = R /\ i = I ) -> ( Scalar ` r ) = ( Scalar ` R ) ) |
7 |
6 2
|
eqtr4di |
|- ( ( r = R /\ i = I ) -> ( Scalar ` r ) = F ) |
8 |
|
id |
|- ( i = I -> i = I ) |
9 |
|
sneq |
|- ( r = R -> { r } = { R } ) |
10 |
|
xpeq12 |
|- ( ( i = I /\ { r } = { R } ) -> ( i X. { r } ) = ( I X. { R } ) ) |
11 |
8 9 10
|
syl2anr |
|- ( ( r = R /\ i = I ) -> ( i X. { r } ) = ( I X. { R } ) ) |
12 |
7 11
|
oveq12d |
|- ( ( r = R /\ i = I ) -> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) = ( F Xs_ ( I X. { R } ) ) ) |
13 |
|
df-pws |
|- ^s = ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) ) |
14 |
|
ovex |
|- ( F Xs_ ( I X. { R } ) ) e. _V |
15 |
12 13 14
|
ovmpoa |
|- ( ( R e. _V /\ I e. _V ) -> ( R ^s I ) = ( F Xs_ ( I X. { R } ) ) ) |
16 |
3 4 15
|
syl2an |
|- ( ( R e. V /\ I e. W ) -> ( R ^s I ) = ( F Xs_ ( I X. { R } ) ) ) |
17 |
1 16
|
eqtrid |
|- ( ( R e. V /\ I e. W ) -> Y = ( F Xs_ ( I X. { R } ) ) ) |