| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsvscaval.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | pwsvscaval.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | pwsvscaval.s |  |-  .x. = ( .s ` R ) | 
						
							| 4 |  | pwsvscaval.t |  |-  .xb = ( .s ` Y ) | 
						
							| 5 |  | pwsvscaval.f |  |-  F = ( Scalar ` R ) | 
						
							| 6 |  | pwsvscaval.k |  |-  K = ( Base ` F ) | 
						
							| 7 |  | pwsvscaval.r |  |-  ( ph -> R e. V ) | 
						
							| 8 |  | pwsvscaval.i |  |-  ( ph -> I e. W ) | 
						
							| 9 |  | pwsvscaval.a |  |-  ( ph -> A e. K ) | 
						
							| 10 |  | pwsvscaval.x |  |-  ( ph -> X e. B ) | 
						
							| 11 |  | pwsvscaval.j |  |-  ( ph -> J e. I ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 | pwsvscafval |  |-  ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) | 
						
							| 13 | 12 | fveq1d |  |-  ( ph -> ( ( A .xb X ) ` J ) = ( ( ( I X. { A } ) oF .x. X ) ` J ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 15 | 1 14 2 7 8 10 | pwselbas |  |-  ( ph -> X : I --> ( Base ` R ) ) | 
						
							| 16 | 15 | ffnd |  |-  ( ph -> X Fn I ) | 
						
							| 17 |  | eqidd |  |-  ( ( ph /\ J e. I ) -> ( X ` J ) = ( X ` J ) ) | 
						
							| 18 | 8 9 16 17 | ofc1 |  |-  ( ( ph /\ J e. I ) -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( A .x. ( X ` J ) ) ) | 
						
							| 19 | 11 18 | mpdan |  |-  ( ph -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( A .x. ( X ` J ) ) ) | 
						
							| 20 | 13 19 | eqtrd |  |-  ( ph -> ( ( A .xb X ) ` J ) = ( A .x. ( X ` J ) ) ) |