Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011) (Revised by Mario Carneiro, 15-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pwtr | |- ( Tr A <-> Tr ~P A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw | |- U. ~P A = A |
|
2 | 1 | sseq1i | |- ( U. ~P A C_ ~P A <-> A C_ ~P A ) |
3 | df-tr | |- ( Tr ~P A <-> U. ~P A C_ ~P A ) |
|
4 | dftr4 | |- ( Tr A <-> A C_ ~P A ) |
|
5 | 2 3 4 | 3bitr4ri | |- ( Tr A <-> Tr ~P A ) |