Metamath Proof Explorer


Theorem pwuncl

Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024)

Ref Expression
Assertion pwuncl
|- ( ( A e. ~P X /\ B e. ~P X ) -> ( A u. B ) e. ~P X )

Proof

Step Hyp Ref Expression
1 unexg
 |-  ( ( A e. ~P X /\ B e. ~P X ) -> ( A u. B ) e. _V )
2 elpwi
 |-  ( A e. ~P X -> A C_ X )
3 elpwi
 |-  ( B e. ~P X -> B C_ X )
4 unss
 |-  ( ( A C_ X /\ B C_ X ) <-> ( A u. B ) C_ X )
5 4 biimpi
 |-  ( ( A C_ X /\ B C_ X ) -> ( A u. B ) C_ X )
6 2 3 5 syl2an
 |-  ( ( A e. ~P X /\ B e. ~P X ) -> ( A u. B ) C_ X )
7 1 6 elpwd
 |-  ( ( A e. ~P X /\ B e. ~P X ) -> ( A u. B ) e. ~P X )