Metamath Proof Explorer


Theorem pwuninel2

Description: Proof of pwuninel under the assumption that the union of the given class is a set, avoiding ax-pr and ax-un . (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion pwuninel2
|- ( U. A e. V -> -. ~P U. A e. A )

Proof

Step Hyp Ref Expression
1 pwnss
 |-  ( U. A e. V -> -. ~P U. A C_ U. A )
2 elssuni
 |-  ( ~P U. A e. A -> ~P U. A C_ U. A )
3 1 2 nsyl
 |-  ( U. A e. V -> -. ~P U. A e. A )