| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1rankidb |
|- ( A e. U. ( R1 " On ) -> A C_ ( R1 ` ( rank ` A ) ) ) |
| 2 |
1
|
sspwd |
|- ( A e. U. ( R1 " On ) -> ~P A C_ ~P ( R1 ` ( rank ` A ) ) ) |
| 3 |
|
rankdmr1 |
|- ( rank ` A ) e. dom R1 |
| 4 |
|
r1sucg |
|- ( ( rank ` A ) e. dom R1 -> ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) |
| 6 |
2 5
|
sseqtrrdi |
|- ( A e. U. ( R1 " On ) -> ~P A C_ ( R1 ` suc ( rank ` A ) ) ) |
| 7 |
|
fvex |
|- ( R1 ` suc ( rank ` A ) ) e. _V |
| 8 |
7
|
elpw2 |
|- ( ~P A e. ~P ( R1 ` suc ( rank ` A ) ) <-> ~P A C_ ( R1 ` suc ( rank ` A ) ) ) |
| 9 |
6 8
|
sylibr |
|- ( A e. U. ( R1 " On ) -> ~P A e. ~P ( R1 ` suc ( rank ` A ) ) ) |
| 10 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 11 |
10
|
simpri |
|- Lim dom R1 |
| 12 |
|
limsuc |
|- ( Lim dom R1 -> ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) ) |
| 13 |
11 12
|
ax-mp |
|- ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) |
| 14 |
3 13
|
mpbi |
|- suc ( rank ` A ) e. dom R1 |
| 15 |
|
r1sucg |
|- ( suc ( rank ` A ) e. dom R1 -> ( R1 ` suc suc ( rank ` A ) ) = ~P ( R1 ` suc ( rank ` A ) ) ) |
| 16 |
14 15
|
ax-mp |
|- ( R1 ` suc suc ( rank ` A ) ) = ~P ( R1 ` suc ( rank ` A ) ) |
| 17 |
9 16
|
eleqtrrdi |
|- ( A e. U. ( R1 " On ) -> ~P A e. ( R1 ` suc suc ( rank ` A ) ) ) |
| 18 |
|
r1elwf |
|- ( ~P A e. ( R1 ` suc suc ( rank ` A ) ) -> ~P A e. U. ( R1 " On ) ) |
| 19 |
17 18
|
syl |
|- ( A e. U. ( R1 " On ) -> ~P A e. U. ( R1 " On ) ) |
| 20 |
|
r1elssi |
|- ( ~P A e. U. ( R1 " On ) -> ~P A C_ U. ( R1 " On ) ) |
| 21 |
|
pwexr |
|- ( ~P A e. U. ( R1 " On ) -> A e. _V ) |
| 22 |
|
pwidg |
|- ( A e. _V -> A e. ~P A ) |
| 23 |
21 22
|
syl |
|- ( ~P A e. U. ( R1 " On ) -> A e. ~P A ) |
| 24 |
20 23
|
sseldd |
|- ( ~P A e. U. ( R1 " On ) -> A e. U. ( R1 " On ) ) |
| 25 |
19 24
|
impbii |
|- ( A e. U. ( R1 " On ) <-> ~P A e. U. ( R1 " On ) ) |