Step |
Hyp |
Ref |
Expression |
1 |
|
pwxpndom2 |
|- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| ( A X. A ) ) ) |
2 |
|
reldom |
|- Rel ~<_ |
3 |
2
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
4 |
3 3
|
xpexd |
|- ( _om ~<_ A -> ( A X. A ) e. _V ) |
5 |
|
djudoml |
|- ( ( ( A X. A ) e. _V /\ A e. _V ) -> ( A X. A ) ~<_ ( ( A X. A ) |_| A ) ) |
6 |
4 3 5
|
syl2anc |
|- ( _om ~<_ A -> ( A X. A ) ~<_ ( ( A X. A ) |_| A ) ) |
7 |
|
djucomen |
|- ( ( ( A X. A ) e. _V /\ A e. _V ) -> ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) |
8 |
4 3 7
|
syl2anc |
|- ( _om ~<_ A -> ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) |
9 |
|
domentr |
|- ( ( ( A X. A ) ~<_ ( ( A X. A ) |_| A ) /\ ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) -> ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) |
10 |
6 8 9
|
syl2anc |
|- ( _om ~<_ A -> ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) |
11 |
|
domtr |
|- ( ( ~P A ~<_ ( A X. A ) /\ ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) |
12 |
11
|
expcom |
|- ( ( A X. A ) ~<_ ( A |_| ( A X. A ) ) -> ( ~P A ~<_ ( A X. A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
13 |
10 12
|
syl |
|- ( _om ~<_ A -> ( ~P A ~<_ ( A X. A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
14 |
1 13
|
mtod |
|- ( _om ~<_ A -> -. ~P A ~<_ ( A X. A ) ) |