| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwxpndom2 |  |-  ( _om ~<_ A -> -. ~P A ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 2 |  | reldom |  |-  Rel ~<_ | 
						
							| 3 | 2 | brrelex2i |  |-  ( _om ~<_ A -> A e. _V ) | 
						
							| 4 | 3 3 | xpexd |  |-  ( _om ~<_ A -> ( A X. A ) e. _V ) | 
						
							| 5 |  | djudoml |  |-  ( ( ( A X. A ) e. _V /\ A e. _V ) -> ( A X. A ) ~<_ ( ( A X. A ) |_| A ) ) | 
						
							| 6 | 4 3 5 | syl2anc |  |-  ( _om ~<_ A -> ( A X. A ) ~<_ ( ( A X. A ) |_| A ) ) | 
						
							| 7 |  | djucomen |  |-  ( ( ( A X. A ) e. _V /\ A e. _V ) -> ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) | 
						
							| 8 | 4 3 7 | syl2anc |  |-  ( _om ~<_ A -> ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) | 
						
							| 9 |  | domentr |  |-  ( ( ( A X. A ) ~<_ ( ( A X. A ) |_| A ) /\ ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) -> ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 10 | 6 8 9 | syl2anc |  |-  ( _om ~<_ A -> ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 11 |  | domtr |  |-  ( ( ~P A ~<_ ( A X. A ) /\ ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 12 | 11 | expcom |  |-  ( ( A X. A ) ~<_ ( A |_| ( A X. A ) ) -> ( ~P A ~<_ ( A X. A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( _om ~<_ A -> ( ~P A ~<_ ( A X. A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) | 
						
							| 14 | 1 13 | mtod |  |-  ( _om ~<_ A -> -. ~P A ~<_ ( A X. A ) ) |