Step |
Hyp |
Ref |
Expression |
1 |
|
divgcdodd |
|- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
3 |
2
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
4 |
|
pythagtriplem19 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
5 |
4
|
3expia |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( A / ( A gcd B ) ) -> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
6 |
|
simp12 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> B e. NN ) |
7 |
|
simp11 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> A e. NN ) |
8 |
|
simp13 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> C e. NN ) |
9 |
|
nnsqcl |
|- ( A e. NN -> ( A ^ 2 ) e. NN ) |
10 |
9
|
nncnd |
|- ( A e. NN -> ( A ^ 2 ) e. CC ) |
11 |
10
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
12 |
|
nnsqcl |
|- ( B e. NN -> ( B ^ 2 ) e. NN ) |
13 |
12
|
nncnd |
|- ( B e. NN -> ( B ^ 2 ) e. CC ) |
14 |
13
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
15 |
11 14
|
addcomd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
16 |
15
|
eqeq1d |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) ) |
17 |
16
|
biimpa |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) |
18 |
17
|
3adant3 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) |
19 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
20 |
19
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
21 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
22 |
21
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
23 |
22
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B e. ZZ ) |
24 |
|
gcdcom |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
25 |
20 23 24
|
syl2an2r |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( A gcd B ) = ( B gcd A ) ) |
26 |
25
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B / ( A gcd B ) ) = ( B / ( B gcd A ) ) ) |
27 |
26
|
breq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( 2 || ( B / ( A gcd B ) ) <-> 2 || ( B / ( B gcd A ) ) ) ) |
28 |
27
|
notbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( B / ( A gcd B ) ) <-> -. 2 || ( B / ( B gcd A ) ) ) ) |
29 |
28
|
biimp3a |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> -. 2 || ( B / ( B gcd A ) ) ) |
30 |
|
pythagtriplem19 |
|- ( ( ( B e. NN /\ A e. NN /\ C e. NN ) /\ ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( B gcd A ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
31 |
6 7 8 18 29 30
|
syl311anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( B / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
32 |
31
|
3expia |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( -. 2 || ( B / ( A gcd B ) ) -> E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
33 |
5 32
|
orim12d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) -> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
34 |
3 33
|
mpd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
35 |
|
ovex |
|- ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) e. _V |
36 |
|
ovex |
|- ( k x. ( 2 x. ( m x. n ) ) ) e. _V |
37 |
|
preq12bg |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) e. _V /\ ( k x. ( 2 x. ( m x. n ) ) ) e. _V ) ) -> ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) ) ) |
38 |
35 36 37
|
mpanr12 |
|- ( ( A e. NN /\ B e. NN ) -> ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) ) ) |
39 |
38
|
anbi1d |
|- ( ( A e. NN /\ B e. NN ) -> ( ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
40 |
39
|
rexbidv |
|- ( ( A e. NN /\ B e. NN ) -> ( E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
41 |
40
|
2rexbidv |
|- ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
42 |
|
andir |
|- ( ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
43 |
|
df-3an |
|- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
44 |
|
df-3an |
|- ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
45 |
43 44
|
orbi12i |
|- ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
46 |
|
3ancoma |
|- ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
47 |
46
|
orbi2i |
|- ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
48 |
42 45 47
|
3bitr2i |
|- ( ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
49 |
48
|
rexbii |
|- ( E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
50 |
49
|
2rexbii |
|- ( E. n e. NN E. m e. NN E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
51 |
|
r19.43 |
|- ( E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
52 |
51
|
2rexbii |
|- ( E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
53 |
|
r19.43 |
|- ( E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
54 |
53
|
rexbii |
|- ( E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> E. n e. NN ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
55 |
|
r19.43 |
|- ( E. n e. NN ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
56 |
54 55
|
bitri |
|- ( E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
57 |
52 56
|
bitri |
|- ( E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
58 |
50 57
|
bitri |
|- ( E. n e. NN E. m e. NN E. k e. NN ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
59 |
41 58
|
bitrdi |
|- ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
60 |
59
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
61 |
60
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) |
62 |
34 61
|
mpbird |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
63 |
62
|
ex |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
64 |
|
pythagtriplem2 |
|- ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
65 |
64
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
66 |
63 65
|
impbid |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |