| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 2 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 3 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 4 |
|
sqcl |
|- ( m e. CC -> ( m ^ 2 ) e. CC ) |
| 5 |
4
|
adantl |
|- ( ( n e. CC /\ m e. CC ) -> ( m ^ 2 ) e. CC ) |
| 6 |
5
|
sqcld |
|- ( ( n e. CC /\ m e. CC ) -> ( ( m ^ 2 ) ^ 2 ) e. CC ) |
| 7 |
|
2cn |
|- 2 e. CC |
| 8 |
|
sqcl |
|- ( n e. CC -> ( n ^ 2 ) e. CC ) |
| 9 |
|
mulcl |
|- ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) |
| 10 |
4 8 9
|
syl2anr |
|- ( ( n e. CC /\ m e. CC ) -> ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) |
| 11 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) -> ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) e. CC ) |
| 12 |
7 10 11
|
sylancr |
|- ( ( n e. CC /\ m e. CC ) -> ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) e. CC ) |
| 13 |
6 12
|
subcld |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) e. CC ) |
| 14 |
8
|
adantr |
|- ( ( n e. CC /\ m e. CC ) -> ( n ^ 2 ) e. CC ) |
| 15 |
14
|
sqcld |
|- ( ( n e. CC /\ m e. CC ) -> ( ( n ^ 2 ) ^ 2 ) e. CC ) |
| 16 |
|
mulcl |
|- ( ( m e. CC /\ n e. CC ) -> ( m x. n ) e. CC ) |
| 17 |
16
|
ancoms |
|- ( ( n e. CC /\ m e. CC ) -> ( m x. n ) e. CC ) |
| 18 |
|
mulcl |
|- ( ( 2 e. CC /\ ( m x. n ) e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) |
| 19 |
7 17 18
|
sylancr |
|- ( ( n e. CC /\ m e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) |
| 20 |
19
|
sqcld |
|- ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) e. CC ) |
| 21 |
13 15 20
|
add32d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 22 |
6 12 20
|
subadd23d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) ) |
| 23 |
|
sqmul |
|- ( ( 2 e. CC /\ ( m x. n ) e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) ) |
| 24 |
7 17 23
|
sylancr |
|- ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) ) |
| 25 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 26 |
25
|
a1i |
|- ( ( n e. CC /\ m e. CC ) -> ( 2 ^ 2 ) = 4 ) |
| 27 |
|
sqmul |
|- ( ( m e. CC /\ n e. CC ) -> ( ( m x. n ) ^ 2 ) = ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) |
| 28 |
27
|
ancoms |
|- ( ( n e. CC /\ m e. CC ) -> ( ( m x. n ) ^ 2 ) = ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) |
| 29 |
26 28
|
oveq12d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) = ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 30 |
24 29
|
eqtrd |
|- ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 31 |
30
|
oveq1d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 32 |
|
4cn |
|- 4 e. CC |
| 33 |
|
subdir |
|- ( ( 4 e. CC /\ 2 e. CC /\ ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) -> ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 34 |
32 7 10 33
|
mp3an12i |
|- ( ( n e. CC /\ m e. CC ) -> ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 35 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
| 36 |
32 7 7 35
|
subaddrii |
|- ( 4 - 2 ) = 2 |
| 37 |
36
|
oveq1i |
|- ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) |
| 38 |
34 37
|
eqtr3di |
|- ( ( n e. CC /\ m e. CC ) -> ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 39 |
31 38
|
eqtrd |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 40 |
39
|
oveq2d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) ^ 2 ) + ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 41 |
22 40
|
eqtrd |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 42 |
41
|
oveq1d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) + ( ( n ^ 2 ) ^ 2 ) ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 43 |
21 42
|
eqtrd |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 44 |
|
binom2sub |
|- ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 45 |
4 8 44
|
syl2anr |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 46 |
45
|
oveq1d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) |
| 47 |
|
binom2 |
|- ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 48 |
4 8 47
|
syl2anr |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 49 |
43 46 48
|
3eqtr4d |
|- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) |
| 50 |
49
|
3adant3 |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) |
| 51 |
50
|
oveq2d |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) ) |
| 52 |
|
simp3 |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> k e. CC ) |
| 53 |
4
|
3ad2ant2 |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( m ^ 2 ) e. CC ) |
| 54 |
8
|
3ad2ant1 |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( n ^ 2 ) e. CC ) |
| 55 |
53 54
|
subcld |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( m ^ 2 ) - ( n ^ 2 ) ) e. CC ) |
| 56 |
52 55
|
sqmuld |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) ) |
| 57 |
17
|
3adant3 |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( m x. n ) e. CC ) |
| 58 |
7 57 18
|
sylancr |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) |
| 59 |
52 58
|
sqmuld |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) |
| 60 |
56 59
|
oveq12d |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) + ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) |
| 61 |
|
sqcl |
|- ( k e. CC -> ( k ^ 2 ) e. CC ) |
| 62 |
61
|
3ad2ant3 |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( k ^ 2 ) e. CC ) |
| 63 |
55
|
sqcld |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) e. CC ) |
| 64 |
58
|
sqcld |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) e. CC ) |
| 65 |
62 63 64
|
adddid |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) = ( ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) + ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) |
| 66 |
60 65
|
eqtr4d |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) |
| 67 |
53 54
|
addcld |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. CC ) |
| 68 |
52 67
|
sqmuld |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) ) |
| 69 |
51 66 68
|
3eqtr4d |
|- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
| 70 |
1 2 3 69
|
syl3an |
|- ( ( n e. NN /\ m e. NN /\ k e. NN ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
| 71 |
|
oveq1 |
|- ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) -> ( A ^ 2 ) = ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) ) |
| 72 |
|
oveq1 |
|- ( B = ( k x. ( 2 x. ( m x. n ) ) ) -> ( B ^ 2 ) = ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) |
| 73 |
71 72
|
oveqan12d |
|- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) ) |
| 74 |
73
|
3adant3 |
|- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) ) |
| 75 |
|
oveq1 |
|- ( C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( C ^ 2 ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
| 76 |
75
|
3ad2ant3 |
|- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( C ^ 2 ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
| 77 |
74 76
|
eqeq12d |
|- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) ) |
| 78 |
70 77
|
syl5ibrcom |
|- ( ( n e. NN /\ m e. NN /\ k e. NN ) -> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 79 |
78
|
3expa |
|- ( ( ( n e. NN /\ m e. NN ) /\ k e. NN ) -> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 80 |
79
|
rexlimdva |
|- ( ( n e. NN /\ m e. NN ) -> ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 81 |
80
|
rexlimivv |
|- ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |