| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 2 |  | nncn |  |-  ( m e. NN -> m e. CC ) | 
						
							| 3 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 4 |  | sqcl |  |-  ( m e. CC -> ( m ^ 2 ) e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( n e. CC /\ m e. CC ) -> ( m ^ 2 ) e. CC ) | 
						
							| 6 | 5 | sqcld |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( m ^ 2 ) ^ 2 ) e. CC ) | 
						
							| 7 |  | 2cn |  |-  2 e. CC | 
						
							| 8 |  | sqcl |  |-  ( n e. CC -> ( n ^ 2 ) e. CC ) | 
						
							| 9 |  | mulcl |  |-  ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) | 
						
							| 10 | 4 8 9 | syl2anr |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) | 
						
							| 11 |  | mulcl |  |-  ( ( 2 e. CC /\ ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) -> ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) e. CC ) | 
						
							| 12 | 7 10 11 | sylancr |  |-  ( ( n e. CC /\ m e. CC ) -> ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) e. CC ) | 
						
							| 13 | 6 12 | subcld |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) e. CC ) | 
						
							| 14 | 8 | adantr |  |-  ( ( n e. CC /\ m e. CC ) -> ( n ^ 2 ) e. CC ) | 
						
							| 15 | 14 | sqcld |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( n ^ 2 ) ^ 2 ) e. CC ) | 
						
							| 16 |  | mulcl |  |-  ( ( m e. CC /\ n e. CC ) -> ( m x. n ) e. CC ) | 
						
							| 17 | 16 | ancoms |  |-  ( ( n e. CC /\ m e. CC ) -> ( m x. n ) e. CC ) | 
						
							| 18 |  | mulcl |  |-  ( ( 2 e. CC /\ ( m x. n ) e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) | 
						
							| 19 | 7 17 18 | sylancr |  |-  ( ( n e. CC /\ m e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) | 
						
							| 20 | 19 | sqcld |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) e. CC ) | 
						
							| 21 | 13 15 20 | add32d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) | 
						
							| 22 | 6 12 20 | subadd23d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) ) | 
						
							| 23 |  | sqmul |  |-  ( ( 2 e. CC /\ ( m x. n ) e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) ) | 
						
							| 24 | 7 17 23 | sylancr |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) ) | 
						
							| 25 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 26 | 25 | a1i |  |-  ( ( n e. CC /\ m e. CC ) -> ( 2 ^ 2 ) = 4 ) | 
						
							| 27 |  | sqmul |  |-  ( ( m e. CC /\ n e. CC ) -> ( ( m x. n ) ^ 2 ) = ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) | 
						
							| 28 | 27 | ancoms |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( m x. n ) ^ 2 ) = ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) | 
						
							| 29 | 26 28 | oveq12d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) = ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) | 
						
							| 30 | 24 29 | eqtrd |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) | 
						
							| 32 |  | 4cn |  |-  4 e. CC | 
						
							| 33 |  | subdir |  |-  ( ( 4 e. CC /\ 2 e. CC /\ ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) -> ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) | 
						
							| 34 | 32 7 10 33 | mp3an12i |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) | 
						
							| 35 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 36 | 32 7 7 35 | subaddrii |  |-  ( 4 - 2 ) = 2 | 
						
							| 37 | 36 | oveq1i |  |-  ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) | 
						
							| 38 | 34 37 | eqtr3di |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) | 
						
							| 39 | 31 38 | eqtrd |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) ^ 2 ) + ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) | 
						
							| 41 | 22 40 | eqtrd |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) + ( ( n ^ 2 ) ^ 2 ) ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) | 
						
							| 43 | 21 42 | eqtrd |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) | 
						
							| 44 |  | binom2sub |  |-  ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) | 
						
							| 45 | 4 8 44 | syl2anr |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) | 
						
							| 46 | 45 | oveq1d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) | 
						
							| 47 |  | binom2 |  |-  ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) | 
						
							| 48 | 4 8 47 | syl2anr |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) | 
						
							| 49 | 43 46 48 | 3eqtr4d |  |-  ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) | 
						
							| 50 | 49 | 3adant3 |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) ) | 
						
							| 52 |  | simp3 |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> k e. CC ) | 
						
							| 53 | 4 | 3ad2ant2 |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( m ^ 2 ) e. CC ) | 
						
							| 54 | 8 | 3ad2ant1 |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( n ^ 2 ) e. CC ) | 
						
							| 55 | 53 54 | subcld |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( m ^ 2 ) - ( n ^ 2 ) ) e. CC ) | 
						
							| 56 | 52 55 | sqmuld |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) ) | 
						
							| 57 | 17 | 3adant3 |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( m x. n ) e. CC ) | 
						
							| 58 | 7 57 18 | sylancr |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) | 
						
							| 59 | 52 58 | sqmuld |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) | 
						
							| 60 | 56 59 | oveq12d |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) + ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) | 
						
							| 61 |  | sqcl |  |-  ( k e. CC -> ( k ^ 2 ) e. CC ) | 
						
							| 62 | 61 | 3ad2ant3 |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( k ^ 2 ) e. CC ) | 
						
							| 63 | 55 | sqcld |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) e. CC ) | 
						
							| 64 | 58 | sqcld |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) e. CC ) | 
						
							| 65 | 62 63 64 | adddid |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) = ( ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) + ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) | 
						
							| 66 | 60 65 | eqtr4d |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) | 
						
							| 67 | 53 54 | addcld |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. CC ) | 
						
							| 68 | 52 67 | sqmuld |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) ) | 
						
							| 69 | 51 66 68 | 3eqtr4d |  |-  ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 70 | 1 2 3 69 | syl3an |  |-  ( ( n e. NN /\ m e. NN /\ k e. NN ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 71 |  | oveq1 |  |-  ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) -> ( A ^ 2 ) = ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 72 |  | oveq1 |  |-  ( B = ( k x. ( 2 x. ( m x. n ) ) ) -> ( B ^ 2 ) = ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) | 
						
							| 73 | 71 72 | oveqan12d |  |-  ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) ) | 
						
							| 74 | 73 | 3adant3 |  |-  ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) ) | 
						
							| 75 |  | oveq1 |  |-  ( C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( C ^ 2 ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 76 | 75 | 3ad2ant3 |  |-  ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( C ^ 2 ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 77 | 74 76 | eqeq12d |  |-  ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) ) | 
						
							| 78 | 70 77 | syl5ibrcom |  |-  ( ( n e. NN /\ m e. NN /\ k e. NN ) -> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) | 
						
							| 79 | 78 | 3expa |  |-  ( ( ( n e. NN /\ m e. NN ) /\ k e. NN ) -> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) | 
						
							| 80 | 79 | rexlimdva |  |-  ( ( n e. NN /\ m e. NN ) -> ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) | 
						
							| 81 | 80 | rexlimivv |  |-  ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |