Step |
Hyp |
Ref |
Expression |
1 |
|
pythagtriplem11.1 |
|- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
2 |
|
pythagtriplem9 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. NN ) |
3 |
2
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. ZZ ) |
4 |
|
simp3r |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || A ) |
5 |
|
2z |
|- 2 e. ZZ |
6 |
|
nnz |
|- ( C e. NN -> C e. ZZ ) |
7 |
6
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
8 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
9 |
8
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
10 |
7 9
|
zaddcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
11 |
10
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
12 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
13 |
12
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
14 |
13
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
15 |
|
dvdsgcdb |
|- ( ( 2 e. ZZ /\ ( C + B ) e. ZZ /\ A e. ZZ ) -> ( ( 2 || ( C + B ) /\ 2 || A ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
16 |
5 11 14 15
|
mp3an2i |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 || ( C + B ) /\ 2 || A ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
17 |
16
|
biimpar |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C + B ) gcd A ) ) -> ( 2 || ( C + B ) /\ 2 || A ) ) |
18 |
17
|
simprd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C + B ) gcd A ) ) -> 2 || A ) |
19 |
4 18
|
mtand |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( ( C + B ) gcd A ) ) |
20 |
|
pythagtriplem7 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |
21 |
20
|
breq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( sqrt ` ( C + B ) ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
22 |
19 21
|
mtbird |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( sqrt ` ( C + B ) ) ) |
23 |
|
pythagtriplem8 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. NN ) |
24 |
23
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. ZZ ) |
25 |
7 9
|
zsubcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
26 |
25
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
27 |
|
dvdsgcdb |
|- ( ( 2 e. ZZ /\ ( C - B ) e. ZZ /\ A e. ZZ ) -> ( ( 2 || ( C - B ) /\ 2 || A ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
28 |
5 26 14 27
|
mp3an2i |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 || ( C - B ) /\ 2 || A ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
29 |
28
|
biimpar |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C - B ) gcd A ) ) -> ( 2 || ( C - B ) /\ 2 || A ) ) |
30 |
29
|
simprd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C - B ) gcd A ) ) -> 2 || A ) |
31 |
4 30
|
mtand |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( ( C - B ) gcd A ) ) |
32 |
|
pythagtriplem6 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) = ( ( C - B ) gcd A ) ) |
33 |
32
|
breq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( sqrt ` ( C - B ) ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
34 |
31 33
|
mtbird |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( sqrt ` ( C - B ) ) ) |
35 |
|
opoe |
|- ( ( ( ( sqrt ` ( C + B ) ) e. ZZ /\ -. 2 || ( sqrt ` ( C + B ) ) ) /\ ( ( sqrt ` ( C - B ) ) e. ZZ /\ -. 2 || ( sqrt ` ( C - B ) ) ) ) -> 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ) |
36 |
3 22 24 34 35
|
syl22anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ) |
37 |
2 23
|
nnaddcld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. NN ) |
38 |
37
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. ZZ ) |
39 |
|
evend2 |
|- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. ZZ -> ( 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) ) |
40 |
38 39
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) ) |
41 |
36 40
|
mpbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) |
42 |
2
|
nnred |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. RR ) |
43 |
23
|
nnred |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. RR ) |
44 |
2
|
nngt0d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( sqrt ` ( C + B ) ) ) |
45 |
23
|
nngt0d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( sqrt ` ( C - B ) ) ) |
46 |
42 43 44 45
|
addgt0d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ) |
47 |
37
|
nnred |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. RR ) |
48 |
|
halfpos2 |
|- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. RR -> ( 0 < ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
49 |
47 48
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 0 < ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
50 |
46 49
|
mpbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) |
51 |
|
elnnz |
|- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. NN <-> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ /\ 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
52 |
41 50 51
|
sylanbrc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. NN ) |
53 |
1 52
|
eqeltrid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> M e. NN ) |