Step |
Hyp |
Ref |
Expression |
1 |
|
pythagtriplem11.1 |
|- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
2 |
1
|
oveq1i |
|- ( M ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) |
3 |
|
nncn |
|- ( C e. NN -> C e. CC ) |
4 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
5 |
|
addcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
6 |
3 4 5
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
7 |
6
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
8 |
7
|
sqrtcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
9 |
|
subcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
10 |
3 4 9
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
11 |
10
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
12 |
11
|
sqrtcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
13 |
8 12
|
addcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
14 |
13
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
15 |
|
2cn |
|- 2 e. CC |
16 |
|
2ne0 |
|- 2 =/= 0 |
17 |
|
sqdiv |
|- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
18 |
15 16 17
|
mp3an23 |
|- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
19 |
15
|
sqvali |
|- ( 2 ^ 2 ) = ( 2 x. 2 ) |
20 |
19
|
oveq2i |
|- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) |
21 |
18 20
|
eqtrdi |
|- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
22 |
14 21
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
23 |
8
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. CC ) |
24 |
12
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. CC ) |
25 |
|
binom2 |
|- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
26 |
23 24 25
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
27 |
|
nnre |
|- ( C e. NN -> C e. RR ) |
28 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
29 |
|
readdcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
30 |
27 28 29
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
31 |
30
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
32 |
31
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. RR ) |
33 |
27
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. RR ) |
34 |
28
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. RR ) |
35 |
|
nngt0 |
|- ( C e. NN -> 0 < C ) |
36 |
35
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < C ) |
37 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
38 |
37
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < B ) |
39 |
33 34 36 38
|
addgt0d |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( C + B ) ) |
40 |
39
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C + B ) ) |
41 |
|
0re |
|- 0 e. RR |
42 |
|
ltle |
|- ( ( 0 e. RR /\ ( C + B ) e. RR ) -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
43 |
41 42
|
mpan |
|- ( ( C + B ) e. RR -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
44 |
32 40 43
|
sylc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C + B ) ) |
45 |
|
resqrtth |
|- ( ( ( C + B ) e. RR /\ 0 <_ ( C + B ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
46 |
32 44 45
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
47 |
46
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
48 |
|
resubcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
49 |
27 28 48
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
50 |
49
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
51 |
50
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. RR ) |
52 |
|
pythagtriplem10 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
53 |
52
|
3adant3 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
54 |
|
ltle |
|- ( ( 0 e. RR /\ ( C - B ) e. RR ) -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
55 |
41 54
|
mpan |
|- ( ( C - B ) e. RR -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
56 |
51 53 55
|
sylc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C - B ) ) |
57 |
|
resqrtth |
|- ( ( ( C - B ) e. RR /\ 0 <_ ( C - B ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
58 |
51 56 57
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
59 |
47 58
|
oveq12d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) ) |
60 |
7
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. CC ) |
61 |
8 12
|
mulcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) |
62 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
63 |
15 61 62
|
sylancr |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
64 |
63
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
65 |
11
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. CC ) |
66 |
60 64 65
|
add32d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) = ( ( ( C + B ) + ( C - B ) ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
67 |
3
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
68 |
67
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
69 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
70 |
69
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
71 |
70
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. CC ) |
72 |
|
adddi |
|- ( ( 2 e. CC /\ C e. CC /\ A e. CC ) -> ( 2 x. ( C + A ) ) = ( ( 2 x. C ) + ( 2 x. A ) ) ) |
73 |
15 68 71 72
|
mp3an2i |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C + A ) ) = ( ( 2 x. C ) + ( 2 x. A ) ) ) |
74 |
4
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. CC ) |
75 |
74
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. CC ) |
76 |
68 75 68
|
ppncand |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
77 |
68
|
2timesd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. C ) = ( C + C ) ) |
78 |
76 77
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
79 |
|
oveq1 |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
80 |
79
|
3ad2ant2 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
81 |
71
|
sqcld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A ^ 2 ) e. CC ) |
82 |
75
|
sqcld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B ^ 2 ) e. CC ) |
83 |
81 82
|
pncand |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
84 |
|
subsq |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
85 |
68 75 84
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
86 |
80 83 85
|
3eqtr3rd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) x. ( C - B ) ) = ( A ^ 2 ) ) |
87 |
86
|
fveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( sqrt ` ( A ^ 2 ) ) ) |
88 |
32 44 51 56
|
sqrtmuld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) |
89 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
90 |
89
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. RR ) |
91 |
90
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. RR ) |
92 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
93 |
92
|
nn0ge0d |
|- ( A e. NN -> 0 <_ A ) |
94 |
93
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ A ) |
95 |
94
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ A ) |
96 |
91 95
|
sqrtsqd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
97 |
87 88 96
|
3eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) = A ) |
98 |
97
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) = ( 2 x. A ) ) |
99 |
78 98
|
oveq12d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( C - B ) ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( 2 x. C ) + ( 2 x. A ) ) ) |
100 |
73 99
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C + A ) ) = ( ( ( C + B ) + ( C - B ) ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
101 |
66 100
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) = ( 2 x. ( C + A ) ) ) |
102 |
26 59 101
|
3eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( 2 x. ( C + A ) ) ) |
103 |
102
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
104 |
|
addcl |
|- ( ( C e. CC /\ A e. CC ) -> ( C + A ) e. CC ) |
105 |
3 69 104
|
syl2anr |
|- ( ( A e. NN /\ C e. NN ) -> ( C + A ) e. CC ) |
106 |
105
|
3adant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + A ) e. CC ) |
107 |
106
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + A ) e. CC ) |
108 |
|
mulcl |
|- ( ( 2 e. CC /\ ( C + A ) e. CC ) -> ( 2 x. ( C + A ) ) e. CC ) |
109 |
15 107 108
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C + A ) ) e. CC ) |
110 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
111 |
|
divdiv1 |
|- ( ( ( 2 x. ( C + A ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
112 |
110 110 111
|
mp3an23 |
|- ( ( 2 x. ( C + A ) ) e. CC -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
113 |
109 112
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
114 |
103 113
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) = ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) ) |
115 |
|
divcan3 |
|- ( ( ( C + A ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( C + A ) ) / 2 ) = ( C + A ) ) |
116 |
15 16 115
|
mp3an23 |
|- ( ( C + A ) e. CC -> ( ( 2 x. ( C + A ) ) / 2 ) = ( C + A ) ) |
117 |
107 116
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. ( C + A ) ) / 2 ) = ( C + A ) ) |
118 |
117
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( C + A ) / 2 ) ) |
119 |
22 114 118
|
3eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( C + A ) / 2 ) ) |
120 |
2 119
|
eqtrid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M ^ 2 ) = ( ( C + A ) / 2 ) ) |