Step |
Hyp |
Ref |
Expression |
1 |
|
pythagtriplem15.1 |
|- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
2 |
|
pythagtriplem15.2 |
|- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
3 |
1 2
|
oveq12i |
|- ( M x. N ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) |
4 |
|
nncn |
|- ( C e. NN -> C e. CC ) |
5 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
6 |
|
addcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
7 |
4 5 6
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
8 |
7
|
sqrtcld |
|- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
9 |
|
subcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
10 |
4 5 9
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
11 |
10
|
sqrtcld |
|- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
12 |
|
addcl |
|- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
13 |
8 11 12
|
syl2anc |
|- ( ( B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
14 |
13
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
16 |
|
subcl |
|- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
17 |
8 11 16
|
syl2anc |
|- ( ( B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
18 |
17
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
19 |
18
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
20 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
21 |
|
divmuldiv |
|- ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC /\ ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) /\ ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
22 |
20 20 21
|
mpanr12 |
|- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC /\ ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
23 |
15 19 22
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
24 |
13 17
|
mulcld |
|- ( ( B e. NN /\ C e. NN ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC ) |
25 |
24
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC ) |
26 |
25
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC ) |
27 |
|
divdiv1 |
|- ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
28 |
20 20 27
|
mp3an23 |
|- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
29 |
26 28
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
30 |
23 29
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) ) |
31 |
|
nnre |
|- ( C e. NN -> C e. RR ) |
32 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
33 |
|
readdcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
34 |
31 32 33
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
35 |
34
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
36 |
35
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. RR ) |
37 |
31
|
adantl |
|- ( ( B e. NN /\ C e. NN ) -> C e. RR ) |
38 |
32
|
adantr |
|- ( ( B e. NN /\ C e. NN ) -> B e. RR ) |
39 |
|
nngt0 |
|- ( C e. NN -> 0 < C ) |
40 |
39
|
adantl |
|- ( ( B e. NN /\ C e. NN ) -> 0 < C ) |
41 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
42 |
41
|
adantr |
|- ( ( B e. NN /\ C e. NN ) -> 0 < B ) |
43 |
37 38 40 42
|
addgt0d |
|- ( ( B e. NN /\ C e. NN ) -> 0 < ( C + B ) ) |
44 |
|
0re |
|- 0 e. RR |
45 |
|
ltle |
|- ( ( 0 e. RR /\ ( C + B ) e. RR ) -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
46 |
44 45
|
mpan |
|- ( ( C + B ) e. RR -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
47 |
34 43 46
|
sylc |
|- ( ( B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
48 |
47
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
49 |
48
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C + B ) ) |
50 |
|
resqrtth |
|- ( ( ( C + B ) e. RR /\ 0 <_ ( C + B ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
51 |
36 49 50
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
52 |
|
resubcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
53 |
31 32 52
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
54 |
53
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
55 |
54
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. RR ) |
56 |
|
pythagtriplem10 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
57 |
56
|
3adant3 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
58 |
|
ltle |
|- ( ( 0 e. RR /\ ( C - B ) e. RR ) -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
59 |
44 58
|
mpan |
|- ( ( C - B ) e. RR -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
60 |
55 57 59
|
sylc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C - B ) ) |
61 |
|
resqrtth |
|- ( ( ( C - B ) e. RR /\ 0 <_ ( C - B ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
62 |
55 60 61
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
63 |
51 62
|
oveq12d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( C + B ) - ( C - B ) ) ) |
64 |
63
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) / 2 ) = ( ( ( C + B ) - ( C - B ) ) / 2 ) ) |
65 |
|
simp12 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
66 |
|
simp13 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) |
67 |
65 66 8
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. CC ) |
68 |
65 66 11
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. CC ) |
69 |
|
subsq |
|- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) ) |
70 |
67 68 69
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) ) |
71 |
70
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) ) |
72 |
|
pnncan |
|- ( ( C e. CC /\ B e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
73 |
72
|
3anidm23 |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
74 |
|
2times |
|- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
75 |
74
|
adantl |
|- ( ( C e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
76 |
73 75
|
eqtr4d |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
77 |
4 5 76
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
78 |
77
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
79 |
78
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
80 |
79
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) - ( C - B ) ) / 2 ) = ( ( 2 x. B ) / 2 ) ) |
81 |
|
2cn |
|- 2 e. CC |
82 |
|
2ne0 |
|- 2 =/= 0 |
83 |
|
divcan3 |
|- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. B ) / 2 ) = B ) |
84 |
81 82 83
|
mp3an23 |
|- ( B e. CC -> ( ( 2 x. B ) / 2 ) = B ) |
85 |
65 5 84
|
3syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) / 2 ) = B ) |
86 |
80 85
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) - ( C - B ) ) / 2 ) = B ) |
87 |
64 71 86
|
3eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) = B ) |
88 |
87
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( B / 2 ) ) |
89 |
30 88
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( B / 2 ) ) |
90 |
3 89
|
eqtrid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M x. N ) = ( B / 2 ) ) |
91 |
90
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( M x. N ) ) = ( 2 x. ( B / 2 ) ) ) |
92 |
|
divcan2 |
|- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( B / 2 ) ) = B ) |
93 |
81 82 92
|
mp3an23 |
|- ( B e. CC -> ( 2 x. ( B / 2 ) ) = B ) |
94 |
5 93
|
syl |
|- ( B e. NN -> ( 2 x. ( B / 2 ) ) = B ) |
95 |
94
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 2 x. ( B / 2 ) ) = B ) |
96 |
95
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B / 2 ) ) = B ) |
97 |
91 96
|
eqtr2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B = ( 2 x. ( M x. N ) ) ) |