| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex |  |-  ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) e. _V | 
						
							| 2 |  | ovex |  |-  ( k x. ( 2 x. ( m x. n ) ) ) e. _V | 
						
							| 3 |  | preq12bg |  |-  ( ( ( A e. NN /\ B e. NN ) /\ ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) e. _V /\ ( k x. ( 2 x. ( m x. n ) ) ) e. _V ) ) -> ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) ) ) | 
						
							| 4 | 1 2 3 | mpanr12 |  |-  ( ( A e. NN /\ B e. NN ) -> ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) ) ) | 
						
							| 5 | 4 | anbi1d |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 6 |  | andir |  |-  ( ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 7 |  | df-3an |  |-  ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) | 
						
							| 8 |  | df-3an |  |-  ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) | 
						
							| 9 | 7 8 | orbi12i |  |-  ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 10 | 6 9 | bitr4i |  |-  ( ( ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 11 | 5 10 | bitrdi |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( ( A e. NN /\ B e. NN ) -> ( E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) | 
						
							| 13 | 12 | 2rexbidv |  |-  ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) | 
						
							| 14 |  | r19.43 |  |-  ( E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 15 | 14 | 2rexbii |  |-  ( E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 16 |  | r19.43 |  |-  ( E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 17 | 16 | rexbii |  |-  ( E. n e. NN E. m e. NN ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> E. n e. NN ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 18 |  | r19.43 |  |-  ( E. n e. NN ( E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 19 | 15 17 18 | 3bitri |  |-  ( E. n e. NN E. m e. NN E. k e. NN ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) | 
						
							| 20 | 13 19 | bitrdi |  |-  ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) ) | 
						
							| 21 |  | pythagtriplem1 |  |-  ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) | 
						
							| 22 | 21 | a1i |  |-  ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) | 
						
							| 23 |  | 3ancoma |  |-  ( ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) | 
						
							| 24 | 23 | rexbii |  |-  ( E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) | 
						
							| 25 | 24 | 2rexbii |  |-  ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) | 
						
							| 26 |  | pythagtriplem1 |  |-  ( E. n e. NN E. m e. NN E. k e. NN ( B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ A = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) | 
						
							| 27 | 25 26 | sylbi |  |-  ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) | 
						
							| 28 |  | nncn |  |-  ( A e. NN -> A e. CC ) | 
						
							| 29 | 28 | sqcld |  |-  ( A e. NN -> ( A ^ 2 ) e. CC ) | 
						
							| 30 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 31 | 30 | sqcld |  |-  ( B e. NN -> ( B ^ 2 ) e. CC ) | 
						
							| 32 |  | addcom |  |-  ( ( ( A ^ 2 ) e. CC /\ ( B ^ 2 ) e. CC ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 33 | 29 31 32 | syl2an |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 34 | 33 | eqeq1d |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( C ^ 2 ) ) ) | 
						
							| 35 | 27 34 | imbitrrid |  |-  ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) | 
						
							| 36 | 22 35 | jaod |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) \/ E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( 2 x. ( m x. n ) ) ) /\ B = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) | 
						
							| 37 | 20 36 | sylbid |  |-  ( ( A e. NN /\ B e. NN ) -> ( E. n e. NN E. m e. NN E. k e. NN ( { A , B } = { ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) , ( k x. ( 2 x. ( m x. n ) ) ) } /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |