Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
2 |
1
|
adantl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
3 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
4 |
|
zsqcl |
|- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
5 |
3 4
|
syl |
|- ( B e. NN -> ( B ^ 2 ) e. ZZ ) |
6 |
5
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. ZZ ) |
7 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
8 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
9 |
7 8
|
syl |
|- ( A e. NN -> ( A ^ 2 ) e. ZZ ) |
10 |
9
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. ZZ ) |
11 |
|
gcdadd |
|- ( ( ( B ^ 2 ) e. ZZ /\ ( A ^ 2 ) e. ZZ ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
12 |
6 10 11
|
syl2anc |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
13 |
6 10
|
gcdcomd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
14 |
12 13
|
eqtr3d |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
15 |
14
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
16 |
2 15
|
eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( C ^ 2 ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
17 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B e. NN ) |
18 |
|
simpl3 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> C e. NN ) |
19 |
|
sqgcd |
|- ( ( B e. NN /\ C e. NN ) -> ( ( B gcd C ) ^ 2 ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) |
21 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> A e. NN ) |
22 |
|
sqgcd |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
23 |
21 17 22
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
24 |
16 20 23
|
3eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( A gcd B ) ^ 2 ) ) |
25 |
24
|
3adant3 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( A gcd B ) ^ 2 ) ) |
26 |
|
simp3l |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A gcd B ) = 1 ) |
27 |
26
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( A gcd B ) ^ 2 ) = ( 1 ^ 2 ) ) |
28 |
25 27
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) ) |
29 |
3
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
30 |
|
nnz |
|- ( C e. NN -> C e. ZZ ) |
31 |
30
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
32 |
29 31
|
gcdcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B gcd C ) e. NN0 ) |
33 |
32
|
nn0red |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B gcd C ) e. RR ) |
34 |
33
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) e. RR ) |
35 |
32
|
nn0ge0d |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ ( B gcd C ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( B gcd C ) ) |
37 |
|
1re |
|- 1 e. RR |
38 |
|
0le1 |
|- 0 <_ 1 |
39 |
|
sq11 |
|- ( ( ( ( B gcd C ) e. RR /\ 0 <_ ( B gcd C ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) |
40 |
37 38 39
|
mpanr12 |
|- ( ( ( B gcd C ) e. RR /\ 0 <_ ( B gcd C ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) |
41 |
34 36 40
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) |
42 |
28 41
|
mpbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) = 1 ) |