| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3r |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || A ) | 
						
							| 2 |  | nnz |  |-  ( C e. NN -> C e. ZZ ) | 
						
							| 3 |  | nnz |  |-  ( B e. NN -> B e. ZZ ) | 
						
							| 4 |  | zsubcl |  |-  ( ( C e. ZZ /\ B e. ZZ ) -> ( C - B ) e. ZZ ) | 
						
							| 5 | 2 3 4 | syl2anr |  |-  ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) | 
						
							| 8 |  | simp13 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) | 
						
							| 9 |  | simp12 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) | 
						
							| 10 | 8 9 | nnaddcld |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. NN ) | 
						
							| 11 | 10 | nnzd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) | 
						
							| 12 |  | gcddvds |  |-  ( ( ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( ( C - B ) gcd ( C + B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) ) | 
						
							| 13 | 7 11 12 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) ) | 
						
							| 14 | 13 | simprd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) | 
						
							| 15 |  | breq1 |  |-  ( ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( C - B ) gcd ( C + B ) ) || ( C + B ) <-> 2 || ( C + B ) ) ) | 
						
							| 16 | 15 | biimpd |  |-  ( ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( C - B ) gcd ( C + B ) ) || ( C + B ) -> 2 || ( C + B ) ) ) | 
						
							| 17 | 14 16 | mpan9 |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( C + B ) ) | 
						
							| 18 |  | 2z |  |-  2 e. ZZ | 
						
							| 19 |  | simpl13 |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. NN ) | 
						
							| 20 | 19 | nnzd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. ZZ ) | 
						
							| 21 |  | simpl12 |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. NN ) | 
						
							| 22 | 21 | nnzd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. ZZ ) | 
						
							| 23 | 20 22 | zaddcld |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( C + B ) e. ZZ ) | 
						
							| 24 | 20 22 | zsubcld |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( C - B ) e. ZZ ) | 
						
							| 25 |  | dvdsmultr1 |  |-  ( ( 2 e. ZZ /\ ( C + B ) e. ZZ /\ ( C - B ) e. ZZ ) -> ( 2 || ( C + B ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) ) | 
						
							| 26 | 18 23 24 25 | mp3an2i |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( 2 || ( C + B ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) ) | 
						
							| 27 | 17 26 | mpd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) | 
						
							| 28 | 19 | nncnd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. CC ) | 
						
							| 29 | 21 | nncnd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. CC ) | 
						
							| 30 |  | subsq |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) | 
						
							| 31 | 28 29 30 | syl2anc |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) | 
						
							| 32 | 27 31 | breqtrrd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( ( C ^ 2 ) - ( B ^ 2 ) ) ) | 
						
							| 33 |  | simpl2 |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) | 
						
							| 35 |  | simpl11 |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> A e. NN ) | 
						
							| 36 | 35 | nnsqcld |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( A ^ 2 ) e. NN ) | 
						
							| 37 | 36 | nncnd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( A ^ 2 ) e. CC ) | 
						
							| 38 | 21 | nnsqcld |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( B ^ 2 ) e. NN ) | 
						
							| 39 | 38 | nncnd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( B ^ 2 ) e. CC ) | 
						
							| 40 | 37 39 | pncand |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) | 
						
							| 41 | 34 40 | eqtr3d |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) | 
						
							| 42 | 32 41 | breqtrd |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( A ^ 2 ) ) | 
						
							| 43 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 44 | 43 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) | 
						
							| 45 | 44 | 3ad2ant1 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> A e. ZZ ) | 
						
							| 47 |  | 2prm |  |-  2 e. Prime | 
						
							| 48 |  | 2nn |  |-  2 e. NN | 
						
							| 49 |  | prmdvdsexp |  |-  ( ( 2 e. Prime /\ A e. ZZ /\ 2 e. NN ) -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) | 
						
							| 50 | 47 48 49 | mp3an13 |  |-  ( A e. ZZ -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) | 
						
							| 51 | 46 50 | syl |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) | 
						
							| 52 | 42 51 | mpbid |  |-  ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || A ) | 
						
							| 53 | 1 52 | mtand |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C - B ) gcd ( C + B ) ) = 2 ) | 
						
							| 54 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 55 |  | gcdaddm |  |-  ( ( -u 1 e. ZZ /\ ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) ) | 
						
							| 56 | 54 7 11 55 | mp3an2i |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) ) | 
						
							| 57 | 8 | nncnd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) | 
						
							| 58 | 9 | nncnd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. CC ) | 
						
							| 59 |  | pnncan |  |-  ( ( C e. CC /\ B e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) | 
						
							| 60 | 59 | 3anidm23 |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) | 
						
							| 61 |  | subcl |  |-  ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) | 
						
							| 62 | 61 | mulm1d |  |-  ( ( C e. CC /\ B e. CC ) -> ( -u 1 x. ( C - B ) ) = -u ( C - B ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( ( C + B ) + -u ( C - B ) ) ) | 
						
							| 64 |  | addcl |  |-  ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) | 
						
							| 65 | 64 61 | negsubd |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + -u ( C - B ) ) = ( ( C + B ) - ( C - B ) ) ) | 
						
							| 66 | 63 65 | eqtrd |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( ( C + B ) - ( C - B ) ) ) | 
						
							| 67 |  | 2times |  |-  ( B e. CC -> ( 2 x. B ) = ( B + B ) ) | 
						
							| 68 | 67 | adantl |  |-  ( ( C e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) | 
						
							| 69 | 60 66 68 | 3eqtr4d |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( 2 x. B ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) | 
						
							| 71 | 57 58 70 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) | 
						
							| 72 | 56 71 | eqtrd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) | 
						
							| 73 | 9 | nnzd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. ZZ ) | 
						
							| 74 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 x. B ) e. ZZ ) | 
						
							| 75 | 18 73 74 | sylancr |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. B ) e. ZZ ) | 
						
							| 76 |  | gcddvds |  |-  ( ( ( C - B ) e. ZZ /\ ( 2 x. B ) e. ZZ ) -> ( ( ( C - B ) gcd ( 2 x. B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) ) | 
						
							| 77 | 7 75 76 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( 2 x. B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) ) | 
						
							| 78 | 77 | simprd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) | 
						
							| 79 | 72 78 | eqbrtrd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) ) | 
						
							| 80 |  | 1z |  |-  1 e. ZZ | 
						
							| 81 |  | gcdaddm |  |-  ( ( 1 e. ZZ /\ ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) ) | 
						
							| 82 | 80 7 11 81 | mp3an2i |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) ) | 
						
							| 83 |  | ppncan |  |-  ( ( C e. CC /\ B e. CC /\ C e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) | 
						
							| 84 | 83 | 3anidm13 |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) | 
						
							| 85 | 61 | mullidd |  |-  ( ( C e. CC /\ B e. CC ) -> ( 1 x. ( C - B ) ) = ( C - B ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( ( C + B ) + ( C - B ) ) ) | 
						
							| 87 |  | 2times |  |-  ( C e. CC -> ( 2 x. C ) = ( C + C ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( C e. CC /\ B e. CC ) -> ( 2 x. C ) = ( C + C ) ) | 
						
							| 89 | 84 86 88 | 3eqtr4d |  |-  ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( 2 x. C ) ) | 
						
							| 90 | 57 58 89 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( 2 x. C ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. C ) ) ) | 
						
							| 92 | 82 91 | eqtrd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( 2 x. C ) ) ) | 
						
							| 93 | 8 | nnzd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. ZZ ) | 
						
							| 94 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ C e. ZZ ) -> ( 2 x. C ) e. ZZ ) | 
						
							| 95 | 18 93 94 | sylancr |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. C ) e. ZZ ) | 
						
							| 96 |  | gcddvds |  |-  ( ( ( C - B ) e. ZZ /\ ( 2 x. C ) e. ZZ ) -> ( ( ( C - B ) gcd ( 2 x. C ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) ) | 
						
							| 97 | 7 95 96 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( 2 x. C ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) ) | 
						
							| 98 | 97 | simprd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) | 
						
							| 99 | 92 98 | eqbrtrd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) | 
						
							| 100 |  | nnaddcl |  |-  ( ( C e. NN /\ B e. NN ) -> ( C + B ) e. NN ) | 
						
							| 101 | 100 | nnne0d |  |-  ( ( C e. NN /\ B e. NN ) -> ( C + B ) =/= 0 ) | 
						
							| 102 | 101 | ancoms |  |-  ( ( B e. NN /\ C e. NN ) -> ( C + B ) =/= 0 ) | 
						
							| 103 | 102 | 3adant1 |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) =/= 0 ) | 
						
							| 104 | 103 | 3ad2ant1 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) =/= 0 ) | 
						
							| 105 | 104 | neneqd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( C + B ) = 0 ) | 
						
							| 106 | 105 | intnand |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C - B ) = 0 /\ ( C + B ) = 0 ) ) | 
						
							| 107 |  | gcdn0cl |  |-  ( ( ( ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) /\ -. ( ( C - B ) = 0 /\ ( C + B ) = 0 ) ) -> ( ( C - B ) gcd ( C + B ) ) e. NN ) | 
						
							| 108 | 7 11 106 107 | syl21anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) e. NN ) | 
						
							| 109 | 108 | nnzd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) e. ZZ ) | 
						
							| 110 |  | dvdsgcd |  |-  ( ( ( ( C - B ) gcd ( C + B ) ) e. ZZ /\ ( 2 x. B ) e. ZZ /\ ( 2 x. C ) e. ZZ ) -> ( ( ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) ) | 
						
							| 111 | 109 75 95 110 | syl3anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) ) | 
						
							| 112 | 79 99 111 | mp2and |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) | 
						
							| 113 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 114 |  | mulgcd |  |-  ( ( 2 e. NN0 /\ B e. ZZ /\ C e. ZZ ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = ( 2 x. ( B gcd C ) ) ) | 
						
							| 115 | 113 73 93 114 | mp3an2i |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = ( 2 x. ( B gcd C ) ) ) | 
						
							| 116 |  | pythagtriplem3 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) = 1 ) | 
						
							| 117 | 116 | oveq2d |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B gcd C ) ) = ( 2 x. 1 ) ) | 
						
							| 118 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 119 | 117 118 | eqtrdi |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B gcd C ) ) = 2 ) | 
						
							| 120 | 115 119 | eqtrd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = 2 ) | 
						
							| 121 | 112 120 | breqtrd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || 2 ) | 
						
							| 122 |  | dvdsprime |  |-  ( ( 2 e. Prime /\ ( ( C - B ) gcd ( C + B ) ) e. NN ) -> ( ( ( C - B ) gcd ( C + B ) ) || 2 <-> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) ) | 
						
							| 123 | 47 108 122 | sylancr |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) || 2 <-> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) ) | 
						
							| 124 | 121 123 | mpbid |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) | 
						
							| 125 |  | orel1 |  |-  ( -. ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) ) | 
						
							| 126 | 53 124 125 | sylc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) |