Step |
Hyp |
Ref |
Expression |
1 |
|
simp3r |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || A ) |
2 |
|
nnz |
|- ( C e. NN -> C e. ZZ ) |
3 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
4 |
|
zsubcl |
|- ( ( C e. ZZ /\ B e. ZZ ) -> ( C - B ) e. ZZ ) |
5 |
2 3 4
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
6 |
5
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
7 |
6
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
8 |
|
simp13 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) |
9 |
|
simp12 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
10 |
8 9
|
nnaddcld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. NN ) |
11 |
10
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
12 |
|
gcddvds |
|- ( ( ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( ( C - B ) gcd ( C + B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) ) |
13 |
7 11 12
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) ) |
14 |
13
|
simprd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( C + B ) ) |
15 |
|
breq1 |
|- ( ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( C - B ) gcd ( C + B ) ) || ( C + B ) <-> 2 || ( C + B ) ) ) |
16 |
15
|
biimpd |
|- ( ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( C - B ) gcd ( C + B ) ) || ( C + B ) -> 2 || ( C + B ) ) ) |
17 |
14 16
|
mpan9 |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( C + B ) ) |
18 |
|
2z |
|- 2 e. ZZ |
19 |
|
simpl13 |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. NN ) |
20 |
19
|
nnzd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. ZZ ) |
21 |
|
simpl12 |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. NN ) |
22 |
21
|
nnzd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. ZZ ) |
23 |
20 22
|
zaddcld |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( C + B ) e. ZZ ) |
24 |
20 22
|
zsubcld |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( C - B ) e. ZZ ) |
25 |
|
dvdsmultr1 |
|- ( ( 2 e. ZZ /\ ( C + B ) e. ZZ /\ ( C - B ) e. ZZ ) -> ( 2 || ( C + B ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) ) |
26 |
18 23 24 25
|
mp3an2i |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( 2 || ( C + B ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) ) |
27 |
17 26
|
mpd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( ( C + B ) x. ( C - B ) ) ) |
28 |
19
|
nncnd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> C e. CC ) |
29 |
21
|
nncnd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> B e. CC ) |
30 |
|
subsq |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
31 |
28 29 30
|
syl2anc |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
32 |
27 31
|
breqtrrd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
33 |
|
simpl2 |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
34 |
33
|
oveq1d |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
35 |
|
simpl11 |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> A e. NN ) |
36 |
35
|
nnsqcld |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( A ^ 2 ) e. NN ) |
37 |
36
|
nncnd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( A ^ 2 ) e. CC ) |
38 |
21
|
nnsqcld |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( B ^ 2 ) e. NN ) |
39 |
38
|
nncnd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( B ^ 2 ) e. CC ) |
40 |
37 39
|
pncand |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
41 |
34 40
|
eqtr3d |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
42 |
32 41
|
breqtrd |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || ( A ^ 2 ) ) |
43 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
44 |
43
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
45 |
44
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
46 |
45
|
adantr |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> A e. ZZ ) |
47 |
|
2prm |
|- 2 e. Prime |
48 |
|
2nn |
|- 2 e. NN |
49 |
|
prmdvdsexp |
|- ( ( 2 e. Prime /\ A e. ZZ /\ 2 e. NN ) -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) |
50 |
47 48 49
|
mp3an13 |
|- ( A e. ZZ -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) |
51 |
46 50
|
syl |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> ( 2 || ( A ^ 2 ) <-> 2 || A ) ) |
52 |
42 51
|
mpbid |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ ( ( C - B ) gcd ( C + B ) ) = 2 ) -> 2 || A ) |
53 |
1 52
|
mtand |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C - B ) gcd ( C + B ) ) = 2 ) |
54 |
|
neg1z |
|- -u 1 e. ZZ |
55 |
|
gcdaddm |
|- ( ( -u 1 e. ZZ /\ ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) ) |
56 |
54 7 11 55
|
mp3an2i |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) ) |
57 |
8
|
nncnd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
58 |
9
|
nncnd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. CC ) |
59 |
|
pnncan |
|- ( ( C e. CC /\ B e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
60 |
59
|
3anidm23 |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
61 |
|
subcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
62 |
61
|
mulm1d |
|- ( ( C e. CC /\ B e. CC ) -> ( -u 1 x. ( C - B ) ) = -u ( C - B ) ) |
63 |
62
|
oveq2d |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( ( C + B ) + -u ( C - B ) ) ) |
64 |
|
addcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
65 |
64 61
|
negsubd |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + -u ( C - B ) ) = ( ( C + B ) - ( C - B ) ) ) |
66 |
63 65
|
eqtrd |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( ( C + B ) - ( C - B ) ) ) |
67 |
|
2times |
|- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
68 |
67
|
adantl |
|- ( ( C e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
69 |
60 66 68
|
3eqtr4d |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) = ( 2 x. B ) ) |
70 |
69
|
oveq2d |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) |
71 |
57 58 70
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( ( C + B ) + ( -u 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) |
72 |
56 71
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( 2 x. B ) ) ) |
73 |
9
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. ZZ ) |
74 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 x. B ) e. ZZ ) |
75 |
18 73 74
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. B ) e. ZZ ) |
76 |
|
gcddvds |
|- ( ( ( C - B ) e. ZZ /\ ( 2 x. B ) e. ZZ ) -> ( ( ( C - B ) gcd ( 2 x. B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) ) |
77 |
7 75 76
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( 2 x. B ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) ) |
78 |
77
|
simprd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( 2 x. B ) ) || ( 2 x. B ) ) |
79 |
72 78
|
eqbrtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) ) |
80 |
|
1z |
|- 1 e. ZZ |
81 |
|
gcdaddm |
|- ( ( 1 e. ZZ /\ ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) ) |
82 |
80 7 11 81
|
mp3an2i |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) ) |
83 |
|
ppncan |
|- ( ( C e. CC /\ B e. CC /\ C e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
84 |
83
|
3anidm13 |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
85 |
61
|
mulid2d |
|- ( ( C e. CC /\ B e. CC ) -> ( 1 x. ( C - B ) ) = ( C - B ) ) |
86 |
85
|
oveq2d |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( ( C + B ) + ( C - B ) ) ) |
87 |
|
2times |
|- ( C e. CC -> ( 2 x. C ) = ( C + C ) ) |
88 |
87
|
adantr |
|- ( ( C e. CC /\ B e. CC ) -> ( 2 x. C ) = ( C + C ) ) |
89 |
84 86 88
|
3eqtr4d |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( 2 x. C ) ) |
90 |
57 58 89
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( 1 x. ( C - B ) ) ) = ( 2 x. C ) ) |
91 |
90
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( ( C + B ) + ( 1 x. ( C - B ) ) ) ) = ( ( C - B ) gcd ( 2 x. C ) ) ) |
92 |
82 91
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = ( ( C - B ) gcd ( 2 x. C ) ) ) |
93 |
8
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. ZZ ) |
94 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ C e. ZZ ) -> ( 2 x. C ) e. ZZ ) |
95 |
18 93 94
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. C ) e. ZZ ) |
96 |
|
gcddvds |
|- ( ( ( C - B ) e. ZZ /\ ( 2 x. C ) e. ZZ ) -> ( ( ( C - B ) gcd ( 2 x. C ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) ) |
97 |
7 95 96
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( 2 x. C ) ) || ( C - B ) /\ ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) ) |
98 |
97
|
simprd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( 2 x. C ) ) || ( 2 x. C ) ) |
99 |
92 98
|
eqbrtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) |
100 |
|
nnaddcl |
|- ( ( C e. NN /\ B e. NN ) -> ( C + B ) e. NN ) |
101 |
100
|
nnne0d |
|- ( ( C e. NN /\ B e. NN ) -> ( C + B ) =/= 0 ) |
102 |
101
|
ancoms |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) =/= 0 ) |
103 |
102
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) =/= 0 ) |
104 |
103
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) =/= 0 ) |
105 |
104
|
neneqd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( C + B ) = 0 ) |
106 |
105
|
intnand |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C - B ) = 0 /\ ( C + B ) = 0 ) ) |
107 |
|
gcdn0cl |
|- ( ( ( ( C - B ) e. ZZ /\ ( C + B ) e. ZZ ) /\ -. ( ( C - B ) = 0 /\ ( C + B ) = 0 ) ) -> ( ( C - B ) gcd ( C + B ) ) e. NN ) |
108 |
7 11 106 107
|
syl21anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) e. NN ) |
109 |
108
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) e. ZZ ) |
110 |
|
dvdsgcd |
|- ( ( ( ( C - B ) gcd ( C + B ) ) e. ZZ /\ ( 2 x. B ) e. ZZ /\ ( 2 x. C ) e. ZZ ) -> ( ( ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) ) |
111 |
109 75 95 110
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( C - B ) gcd ( C + B ) ) || ( 2 x. B ) /\ ( ( C - B ) gcd ( C + B ) ) || ( 2 x. C ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) ) |
112 |
79 99 111
|
mp2and |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || ( ( 2 x. B ) gcd ( 2 x. C ) ) ) |
113 |
|
2nn0 |
|- 2 e. NN0 |
114 |
|
mulgcd |
|- ( ( 2 e. NN0 /\ B e. ZZ /\ C e. ZZ ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = ( 2 x. ( B gcd C ) ) ) |
115 |
113 73 93 114
|
mp3an2i |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = ( 2 x. ( B gcd C ) ) ) |
116 |
|
pythagtriplem3 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) = 1 ) |
117 |
116
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B gcd C ) ) = ( 2 x. 1 ) ) |
118 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
119 |
117 118
|
eqtrdi |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B gcd C ) ) = 2 ) |
120 |
115 119
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) gcd ( 2 x. C ) ) = 2 ) |
121 |
112 120
|
breqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) || 2 ) |
122 |
|
dvdsprime |
|- ( ( 2 e. Prime /\ ( ( C - B ) gcd ( C + B ) ) e. NN ) -> ( ( ( C - B ) gcd ( C + B ) ) || 2 <-> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) ) |
123 |
47 108 122
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) || 2 <-> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) ) |
124 |
121 123
|
mpbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) ) |
125 |
|
orel1 |
|- ( -. ( ( C - B ) gcd ( C + B ) ) = 2 -> ( ( ( ( C - B ) gcd ( C + B ) ) = 2 \/ ( ( C - B ) gcd ( C + B ) ) = 1 ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) ) |
126 |
53 124 125
|
sylc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) |