Step |
Hyp |
Ref |
Expression |
1 |
|
pythagtriplem7 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |
2 |
|
nnz |
|- ( C e. NN -> C e. ZZ ) |
3 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
4 |
|
zaddcl |
|- ( ( C e. ZZ /\ B e. ZZ ) -> ( C + B ) e. ZZ ) |
5 |
2 3 4
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
6 |
5
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
7 |
6
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
8 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
9 |
8
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
10 |
9
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
11 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
12 |
11
|
neneqd |
|- ( A e. NN -> -. A = 0 ) |
13 |
12
|
intnand |
|- ( A e. NN -> -. ( ( C + B ) = 0 /\ A = 0 ) ) |
14 |
13
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> -. ( ( C + B ) = 0 /\ A = 0 ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C + B ) = 0 /\ A = 0 ) ) |
16 |
|
gcdn0cl |
|- ( ( ( ( C + B ) e. ZZ /\ A e. ZZ ) /\ -. ( ( C + B ) = 0 /\ A = 0 ) ) -> ( ( C + B ) gcd A ) e. NN ) |
17 |
7 10 15 16
|
syl21anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) gcd A ) e. NN ) |
18 |
1 17
|
eqeltrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. NN ) |