Step |
Hyp |
Ref |
Expression |
1 |
|
pyth.1 |
|- X = ( BaseSet ` U ) |
2 |
|
pyth.2 |
|- G = ( +v ` U ) |
3 |
|
pyth.6 |
|- N = ( normCV ` U ) |
4 |
|
pyth.7 |
|- P = ( .iOLD ` U ) |
5 |
|
pythi.u |
|- U e. CPreHilOLD |
6 |
|
pythi.a |
|- A e. X |
7 |
|
pythi.b |
|- B e. X |
8 |
1 2 4 5 6 7 6 7
|
ip2dii |
|- ( ( A G B ) P ( A G B ) ) = ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) |
9 |
|
id |
|- ( ( A P B ) = 0 -> ( A P B ) = 0 ) |
10 |
5
|
phnvi |
|- U e. NrmCVec |
11 |
1 4
|
diporthcom |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) = 0 <-> ( B P A ) = 0 ) ) |
12 |
10 6 7 11
|
mp3an |
|- ( ( A P B ) = 0 <-> ( B P A ) = 0 ) |
13 |
12
|
biimpi |
|- ( ( A P B ) = 0 -> ( B P A ) = 0 ) |
14 |
9 13
|
oveq12d |
|- ( ( A P B ) = 0 -> ( ( A P B ) + ( B P A ) ) = ( 0 + 0 ) ) |
15 |
|
00id |
|- ( 0 + 0 ) = 0 |
16 |
14 15
|
eqtrdi |
|- ( ( A P B ) = 0 -> ( ( A P B ) + ( B P A ) ) = 0 ) |
17 |
16
|
oveq2d |
|- ( ( A P B ) = 0 -> ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) = ( ( ( A P A ) + ( B P B ) ) + 0 ) ) |
18 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A P A ) e. CC ) |
19 |
10 6 6 18
|
mp3an |
|- ( A P A ) e. CC |
20 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ B e. X ) -> ( B P B ) e. CC ) |
21 |
10 7 7 20
|
mp3an |
|- ( B P B ) e. CC |
22 |
19 21
|
addcli |
|- ( ( A P A ) + ( B P B ) ) e. CC |
23 |
22
|
addid1i |
|- ( ( ( A P A ) + ( B P B ) ) + 0 ) = ( ( A P A ) + ( B P B ) ) |
24 |
17 23
|
eqtrdi |
|- ( ( A P B ) = 0 -> ( ( ( A P A ) + ( B P B ) ) + ( ( A P B ) + ( B P A ) ) ) = ( ( A P A ) + ( B P B ) ) ) |
25 |
8 24
|
syl5eq |
|- ( ( A P B ) = 0 -> ( ( A G B ) P ( A G B ) ) = ( ( A P A ) + ( B P B ) ) ) |
26 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
27 |
10 6 7 26
|
mp3an |
|- ( A G B ) e. X |
28 |
1 3 4
|
ipidsq |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X ) -> ( ( A G B ) P ( A G B ) ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
29 |
10 27 28
|
mp2an |
|- ( ( A G B ) P ( A G B ) ) = ( ( N ` ( A G B ) ) ^ 2 ) |
30 |
1 3 4
|
ipidsq |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |
31 |
10 6 30
|
mp2an |
|- ( A P A ) = ( ( N ` A ) ^ 2 ) |
32 |
1 3 4
|
ipidsq |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( B P B ) = ( ( N ` B ) ^ 2 ) ) |
33 |
10 7 32
|
mp2an |
|- ( B P B ) = ( ( N ` B ) ^ 2 ) |
34 |
31 33
|
oveq12i |
|- ( ( A P A ) + ( B P B ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) |
35 |
25 29 34
|
3eqtr3g |
|- ( ( A P B ) = 0 -> ( ( N ` ( A G B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |