Step |
Hyp |
Ref |
Expression |
1 |
|
q1pcl.q |
|- Q = ( quot1p ` R ) |
2 |
|
q1pcl.p |
|- P = ( Poly1 ` R ) |
3 |
|
q1pcl.b |
|- B = ( Base ` P ) |
4 |
|
q1pcl.c |
|- C = ( Unic1p ` R ) |
5 |
|
eqid |
|- ( F Q G ) = ( F Q G ) |
6 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
7 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
8 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
9 |
1 2 3 6 7 8 4
|
q1peqb |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( ( F Q G ) e. B /\ ( ( deg1 ` R ) ` ( F ( -g ` P ) ( ( F Q G ) ( .r ` P ) G ) ) ) < ( ( deg1 ` R ) ` G ) ) <-> ( F Q G ) = ( F Q G ) ) ) |
10 |
5 9
|
mpbiri |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( F Q G ) e. B /\ ( ( deg1 ` R ) ` ( F ( -g ` P ) ( ( F Q G ) ( .r ` P ) G ) ) ) < ( ( deg1 ` R ) ` G ) ) ) |
11 |
10
|
simpld |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F Q G ) e. B ) |