Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|- P = ( Poly1 ` R ) |
2 |
|
r1padd1.u |
|- U = ( Base ` P ) |
3 |
|
r1padd1.n |
|- N = ( Unic1p ` R ) |
4 |
|
q1pdir.d |
|- ./ = ( quot1p ` R ) |
5 |
|
q1pdir.r |
|- ( ph -> R e. Ring ) |
6 |
|
q1pdir.a |
|- ( ph -> A e. U ) |
7 |
|
q1pdir.c |
|- ( ph -> C e. N ) |
8 |
|
q1pdir.b |
|- ( ph -> B e. U ) |
9 |
|
q1pdir.1 |
|- .+ = ( +g ` P ) |
10 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
11 |
5 10
|
syl |
|- ( ph -> P e. Ring ) |
12 |
11
|
ringgrpd |
|- ( ph -> P e. Grp ) |
13 |
2 9 12 6 8
|
grpcld |
|- ( ph -> ( A .+ B ) e. U ) |
14 |
4 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ C e. N ) -> ( A ./ C ) e. U ) |
15 |
5 6 7 14
|
syl3anc |
|- ( ph -> ( A ./ C ) e. U ) |
16 |
4 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ B e. U /\ C e. N ) -> ( B ./ C ) e. U ) |
17 |
5 8 7 16
|
syl3anc |
|- ( ph -> ( B ./ C ) e. U ) |
18 |
2 9 12 15 17
|
grpcld |
|- ( ph -> ( ( A ./ C ) .+ ( B ./ C ) ) e. U ) |
19 |
1 2 3
|
uc1pcl |
|- ( C e. N -> C e. U ) |
20 |
7 19
|
syl |
|- ( ph -> C e. U ) |
21 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
22 |
2 9 21
|
ringdir |
|- ( ( P e. Ring /\ ( ( A ./ C ) e. U /\ ( B ./ C ) e. U /\ C e. U ) ) -> ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) = ( ( ( A ./ C ) ( .r ` P ) C ) .+ ( ( B ./ C ) ( .r ` P ) C ) ) ) |
23 |
11 15 17 20 22
|
syl13anc |
|- ( ph -> ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) = ( ( ( A ./ C ) ( .r ` P ) C ) .+ ( ( B ./ C ) ( .r ` P ) C ) ) ) |
24 |
23
|
oveq2d |
|- ( ph -> ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) ) = ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) ( .r ` P ) C ) .+ ( ( B ./ C ) ( .r ` P ) C ) ) ) ) |
25 |
11
|
ringabld |
|- ( ph -> P e. Abel ) |
26 |
2 21 11 15 20
|
ringcld |
|- ( ph -> ( ( A ./ C ) ( .r ` P ) C ) e. U ) |
27 |
2 21 11 17 20
|
ringcld |
|- ( ph -> ( ( B ./ C ) ( .r ` P ) C ) e. U ) |
28 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
29 |
2 9 28
|
ablsub4 |
|- ( ( P e. Abel /\ ( A e. U /\ B e. U ) /\ ( ( ( A ./ C ) ( .r ` P ) C ) e. U /\ ( ( B ./ C ) ( .r ` P ) C ) e. U ) ) -> ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) ( .r ` P ) C ) .+ ( ( B ./ C ) ( .r ` P ) C ) ) ) = ( ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) .+ ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) ) |
30 |
25 6 8 26 27 29
|
syl122anc |
|- ( ph -> ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) ( .r ` P ) C ) .+ ( ( B ./ C ) ( .r ` P ) C ) ) ) = ( ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) .+ ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) ) |
31 |
24 30
|
eqtrd |
|- ( ph -> ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) ) = ( ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) .+ ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( ( deg1 ` R ) ` ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) ) ) = ( ( deg1 ` R ) ` ( ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) .+ ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) ) ) |
33 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
34 |
|
eqid |
|- ( rem1p ` R ) = ( rem1p ` R ) |
35 |
34 1 2 4 21 28
|
r1pval |
|- ( ( A e. U /\ C e. U ) -> ( A ( rem1p ` R ) C ) = ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) |
36 |
6 20 35
|
syl2anc |
|- ( ph -> ( A ( rem1p ` R ) C ) = ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) |
37 |
34 1 2 3
|
r1pcl |
|- ( ( R e. Ring /\ A e. U /\ C e. N ) -> ( A ( rem1p ` R ) C ) e. U ) |
38 |
5 6 7 37
|
syl3anc |
|- ( ph -> ( A ( rem1p ` R ) C ) e. U ) |
39 |
36 38
|
eqeltrrd |
|- ( ph -> ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) e. U ) |
40 |
34 1 2 4 21 28
|
r1pval |
|- ( ( B e. U /\ C e. U ) -> ( B ( rem1p ` R ) C ) = ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) |
41 |
8 20 40
|
syl2anc |
|- ( ph -> ( B ( rem1p ` R ) C ) = ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) |
42 |
34 1 2 3
|
r1pcl |
|- ( ( R e. Ring /\ B e. U /\ C e. N ) -> ( B ( rem1p ` R ) C ) e. U ) |
43 |
5 8 7 42
|
syl3anc |
|- ( ph -> ( B ( rem1p ` R ) C ) e. U ) |
44 |
41 43
|
eqeltrrd |
|- ( ph -> ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) e. U ) |
45 |
33 1 2
|
deg1xrcl |
|- ( C e. U -> ( ( deg1 ` R ) ` C ) e. RR* ) |
46 |
20 45
|
syl |
|- ( ph -> ( ( deg1 ` R ) ` C ) e. RR* ) |
47 |
36
|
fveq2d |
|- ( ph -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) = ( ( deg1 ` R ) ` ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) ) |
48 |
34 1 2 3 33
|
r1pdeglt |
|- ( ( R e. Ring /\ A e. U /\ C e. N ) -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) < ( ( deg1 ` R ) ` C ) ) |
49 |
5 6 7 48
|
syl3anc |
|- ( ph -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) < ( ( deg1 ` R ) ` C ) ) |
50 |
47 49
|
eqbrtrrd |
|- ( ph -> ( ( deg1 ` R ) ` ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) |
51 |
41
|
fveq2d |
|- ( ph -> ( ( deg1 ` R ) ` ( B ( rem1p ` R ) C ) ) = ( ( deg1 ` R ) ` ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) ) |
52 |
34 1 2 3 33
|
r1pdeglt |
|- ( ( R e. Ring /\ B e. U /\ C e. N ) -> ( ( deg1 ` R ) ` ( B ( rem1p ` R ) C ) ) < ( ( deg1 ` R ) ` C ) ) |
53 |
5 8 7 52
|
syl3anc |
|- ( ph -> ( ( deg1 ` R ) ` ( B ( rem1p ` R ) C ) ) < ( ( deg1 ` R ) ` C ) ) |
54 |
51 53
|
eqbrtrrd |
|- ( ph -> ( ( deg1 ` R ) ` ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) |
55 |
1 33 5 2 9 39 44 46 50 54
|
deg1addlt |
|- ( ph -> ( ( deg1 ` R ) ` ( ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) .+ ( B ( -g ` P ) ( ( B ./ C ) ( .r ` P ) C ) ) ) ) < ( ( deg1 ` R ) ` C ) ) |
56 |
32 55
|
eqbrtrd |
|- ( ph -> ( ( deg1 ` R ) ` ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) |
57 |
4 1 2 33 28 21 3
|
q1peqb |
|- ( ( R e. Ring /\ ( A .+ B ) e. U /\ C e. N ) -> ( ( ( ( A ./ C ) .+ ( B ./ C ) ) e. U /\ ( ( deg1 ` R ) ` ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) <-> ( ( A .+ B ) ./ C ) = ( ( A ./ C ) .+ ( B ./ C ) ) ) ) |
58 |
57
|
biimpa |
|- ( ( ( R e. Ring /\ ( A .+ B ) e. U /\ C e. N ) /\ ( ( ( A ./ C ) .+ ( B ./ C ) ) e. U /\ ( ( deg1 ` R ) ` ( ( A .+ B ) ( -g ` P ) ( ( ( A ./ C ) .+ ( B ./ C ) ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) ) -> ( ( A .+ B ) ./ C ) = ( ( A ./ C ) .+ ( B ./ C ) ) ) |
59 |
5 13 7 18 56 58
|
syl32anc |
|- ( ph -> ( ( A .+ B ) ./ C ) = ( ( A ./ C ) .+ ( B ./ C ) ) ) |