Step |
Hyp |
Ref |
Expression |
1 |
|
q1pval.q |
|- Q = ( quot1p ` R ) |
2 |
|
q1pval.p |
|- P = ( Poly1 ` R ) |
3 |
|
q1pval.b |
|- B = ( Base ` P ) |
4 |
|
q1pval.d |
|- D = ( deg1 ` R ) |
5 |
|
q1pval.m |
|- .- = ( -g ` P ) |
6 |
|
q1pval.t |
|- .x. = ( .r ` P ) |
7 |
2 3
|
elbasfv |
|- ( G e. B -> R e. _V ) |
8 |
|
fveq2 |
|- ( r = R -> ( Poly1 ` r ) = ( Poly1 ` R ) ) |
9 |
8 2
|
eqtr4di |
|- ( r = R -> ( Poly1 ` r ) = P ) |
10 |
9
|
csbeq1d |
|- ( r = R -> [_ ( Poly1 ` r ) / p ]_ [_ ( Base ` p ) / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) = [_ P / p ]_ [_ ( Base ` p ) / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) ) |
11 |
2
|
fvexi |
|- P e. _V |
12 |
11
|
a1i |
|- ( r = R -> P e. _V ) |
13 |
|
fveq2 |
|- ( p = P -> ( Base ` p ) = ( Base ` P ) ) |
14 |
13
|
adantl |
|- ( ( r = R /\ p = P ) -> ( Base ` p ) = ( Base ` P ) ) |
15 |
14 3
|
eqtr4di |
|- ( ( r = R /\ p = P ) -> ( Base ` p ) = B ) |
16 |
15
|
csbeq1d |
|- ( ( r = R /\ p = P ) -> [_ ( Base ` p ) / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) = [_ B / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) ) |
17 |
3
|
fvexi |
|- B e. _V |
18 |
17
|
a1i |
|- ( ( r = R /\ p = P ) -> B e. _V ) |
19 |
|
simpr |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> b = B ) |
20 |
|
fveq2 |
|- ( r = R -> ( deg1 ` r ) = ( deg1 ` R ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( deg1 ` r ) = ( deg1 ` R ) ) |
22 |
21 4
|
eqtr4di |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( deg1 ` r ) = D ) |
23 |
|
fveq2 |
|- ( p = P -> ( -g ` p ) = ( -g ` P ) ) |
24 |
23
|
ad2antlr |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( -g ` p ) = ( -g ` P ) ) |
25 |
24 5
|
eqtr4di |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( -g ` p ) = .- ) |
26 |
|
eqidd |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> f = f ) |
27 |
|
fveq2 |
|- ( p = P -> ( .r ` p ) = ( .r ` P ) ) |
28 |
27
|
ad2antlr |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( .r ` p ) = ( .r ` P ) ) |
29 |
28 6
|
eqtr4di |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( .r ` p ) = .x. ) |
30 |
29
|
oveqd |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( q ( .r ` p ) g ) = ( q .x. g ) ) |
31 |
25 26 30
|
oveq123d |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( f ( -g ` p ) ( q ( .r ` p ) g ) ) = ( f .- ( q .x. g ) ) ) |
32 |
22 31
|
fveq12d |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) = ( D ` ( f .- ( q .x. g ) ) ) ) |
33 |
22
|
fveq1d |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( ( deg1 ` r ) ` g ) = ( D ` g ) ) |
34 |
32 33
|
breq12d |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) <-> ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) |
35 |
19 34
|
riotaeqbidv |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) = ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) |
36 |
19 19 35
|
mpoeq123dv |
|- ( ( ( r = R /\ p = P ) /\ b = B ) -> ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
37 |
18 36
|
csbied |
|- ( ( r = R /\ p = P ) -> [_ B / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
38 |
16 37
|
eqtrd |
|- ( ( r = R /\ p = P ) -> [_ ( Base ` p ) / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
39 |
12 38
|
csbied |
|- ( r = R -> [_ P / p ]_ [_ ( Base ` p ) / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
40 |
10 39
|
eqtrd |
|- ( r = R -> [_ ( Poly1 ` r ) / p ]_ [_ ( Base ` p ) / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
41 |
|
df-q1p |
|- quot1p = ( r e. _V |-> [_ ( Poly1 ` r ) / p ]_ [_ ( Base ` p ) / b ]_ ( f e. b , g e. b |-> ( iota_ q e. b ( ( deg1 ` r ) ` ( f ( -g ` p ) ( q ( .r ` p ) g ) ) ) < ( ( deg1 ` r ) ` g ) ) ) ) |
42 |
17 17
|
mpoex |
|- ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) e. _V |
43 |
40 41 42
|
fvmpt |
|- ( R e. _V -> ( quot1p ` R ) = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
44 |
1 43
|
syl5eq |
|- ( R e. _V -> Q = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
45 |
7 44
|
syl |
|- ( G e. B -> Q = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
46 |
45
|
adantl |
|- ( ( F e. B /\ G e. B ) -> Q = ( f e. B , g e. B |-> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) ) ) |
47 |
|
id |
|- ( f = F -> f = F ) |
48 |
|
oveq2 |
|- ( g = G -> ( q .x. g ) = ( q .x. G ) ) |
49 |
47 48
|
oveqan12d |
|- ( ( f = F /\ g = G ) -> ( f .- ( q .x. g ) ) = ( F .- ( q .x. G ) ) ) |
50 |
49
|
fveq2d |
|- ( ( f = F /\ g = G ) -> ( D ` ( f .- ( q .x. g ) ) ) = ( D ` ( F .- ( q .x. G ) ) ) ) |
51 |
|
fveq2 |
|- ( g = G -> ( D ` g ) = ( D ` G ) ) |
52 |
51
|
adantl |
|- ( ( f = F /\ g = G ) -> ( D ` g ) = ( D ` G ) ) |
53 |
50 52
|
breq12d |
|- ( ( f = F /\ g = G ) -> ( ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) <-> ( D ` ( F .- ( q .x. G ) ) ) < ( D ` G ) ) ) |
54 |
53
|
riotabidv |
|- ( ( f = F /\ g = G ) -> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) = ( iota_ q e. B ( D ` ( F .- ( q .x. G ) ) ) < ( D ` G ) ) ) |
55 |
54
|
adantl |
|- ( ( ( F e. B /\ G e. B ) /\ ( f = F /\ g = G ) ) -> ( iota_ q e. B ( D ` ( f .- ( q .x. g ) ) ) < ( D ` g ) ) = ( iota_ q e. B ( D ` ( F .- ( q .x. G ) ) ) < ( D ` G ) ) ) |
56 |
|
simpl |
|- ( ( F e. B /\ G e. B ) -> F e. B ) |
57 |
|
simpr |
|- ( ( F e. B /\ G e. B ) -> G e. B ) |
58 |
|
riotaex |
|- ( iota_ q e. B ( D ` ( F .- ( q .x. G ) ) ) < ( D ` G ) ) e. _V |
59 |
58
|
a1i |
|- ( ( F e. B /\ G e. B ) -> ( iota_ q e. B ( D ` ( F .- ( q .x. G ) ) ) < ( D ` G ) ) e. _V ) |
60 |
46 55 56 57 59
|
ovmpod |
|- ( ( F e. B /\ G e. B ) -> ( F Q G ) = ( iota_ q e. B ( D ` ( F .- ( q .x. G ) ) ) < ( D ` G ) ) ) |