Step |
Hyp |
Ref |
Expression |
1 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
2 |
|
qsscn |
|- QQ C_ CC |
3 |
|
1z |
|- 1 e. ZZ |
4 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
5 |
3 4
|
ax-mp |
|- 1 e. QQ |
6 |
|
plyid |
|- ( ( QQ C_ CC /\ 1 e. QQ ) -> Xp e. ( Poly ` QQ ) ) |
7 |
2 5 6
|
mp2an |
|- Xp e. ( Poly ` QQ ) |
8 |
7
|
a1i |
|- ( A e. QQ -> Xp e. ( Poly ` QQ ) ) |
9 |
|
plyconst |
|- ( ( QQ C_ CC /\ A e. QQ ) -> ( CC X. { A } ) e. ( Poly ` QQ ) ) |
10 |
2 9
|
mpan |
|- ( A e. QQ -> ( CC X. { A } ) e. ( Poly ` QQ ) ) |
11 |
|
qaddcl |
|- ( ( x e. QQ /\ y e. QQ ) -> ( x + y ) e. QQ ) |
12 |
11
|
adantl |
|- ( ( A e. QQ /\ ( x e. QQ /\ y e. QQ ) ) -> ( x + y ) e. QQ ) |
13 |
|
qmulcl |
|- ( ( x e. QQ /\ y e. QQ ) -> ( x x. y ) e. QQ ) |
14 |
13
|
adantl |
|- ( ( A e. QQ /\ ( x e. QQ /\ y e. QQ ) ) -> ( x x. y ) e. QQ ) |
15 |
|
qnegcl |
|- ( 1 e. QQ -> -u 1 e. QQ ) |
16 |
5 15
|
ax-mp |
|- -u 1 e. QQ |
17 |
16
|
a1i |
|- ( A e. QQ -> -u 1 e. QQ ) |
18 |
8 10 12 14 17
|
plysub |
|- ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` QQ ) ) |
19 |
|
peano2cn |
|- ( A e. CC -> ( A + 1 ) e. CC ) |
20 |
1 19
|
syl |
|- ( A e. QQ -> ( A + 1 ) e. CC ) |
21 |
|
fnresi |
|- ( _I |` CC ) Fn CC |
22 |
|
df-idp |
|- Xp = ( _I |` CC ) |
23 |
22
|
fneq1i |
|- ( Xp Fn CC <-> ( _I |` CC ) Fn CC ) |
24 |
21 23
|
mpbir |
|- Xp Fn CC |
25 |
24
|
a1i |
|- ( A e. QQ -> Xp Fn CC ) |
26 |
|
fnconstg |
|- ( A e. QQ -> ( CC X. { A } ) Fn CC ) |
27 |
|
cnex |
|- CC e. _V |
28 |
27
|
a1i |
|- ( A e. QQ -> CC e. _V ) |
29 |
|
inidm |
|- ( CC i^i CC ) = CC |
30 |
22
|
fveq1i |
|- ( Xp ` ( A + 1 ) ) = ( ( _I |` CC ) ` ( A + 1 ) ) |
31 |
|
fvresi |
|- ( ( A + 1 ) e. CC -> ( ( _I |` CC ) ` ( A + 1 ) ) = ( A + 1 ) ) |
32 |
30 31
|
eqtrid |
|- ( ( A + 1 ) e. CC -> ( Xp ` ( A + 1 ) ) = ( A + 1 ) ) |
33 |
32
|
adantl |
|- ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( Xp ` ( A + 1 ) ) = ( A + 1 ) ) |
34 |
|
fvconst2g |
|- ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( ( CC X. { A } ) ` ( A + 1 ) ) = A ) |
35 |
25 26 28 28 29 33 34
|
ofval |
|- ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = ( ( A + 1 ) - A ) ) |
36 |
20 35
|
mpdan |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = ( ( A + 1 ) - A ) ) |
37 |
|
ax-1cn |
|- 1 e. CC |
38 |
|
pncan2 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - A ) = 1 ) |
39 |
1 37 38
|
sylancl |
|- ( A e. QQ -> ( ( A + 1 ) - A ) = 1 ) |
40 |
36 39
|
eqtrd |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = 1 ) |
41 |
|
ax-1ne0 |
|- 1 =/= 0 |
42 |
41
|
a1i |
|- ( A e. QQ -> 1 =/= 0 ) |
43 |
40 42
|
eqnetrd |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) =/= 0 ) |
44 |
|
ne0p |
|- ( ( ( A + 1 ) e. CC /\ ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) =/= 0 ) -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) |
45 |
20 43 44
|
syl2anc |
|- ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) |
46 |
|
eldifsn |
|- ( ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` QQ ) /\ ( Xp oF - ( CC X. { A } ) ) =/= 0p ) ) |
47 |
18 45 46
|
sylanbrc |
|- ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) ) |
48 |
22
|
fveq1i |
|- ( Xp ` A ) = ( ( _I |` CC ) ` A ) |
49 |
|
fvresi |
|- ( A e. CC -> ( ( _I |` CC ) ` A ) = A ) |
50 |
48 49
|
eqtrid |
|- ( A e. CC -> ( Xp ` A ) = A ) |
51 |
50
|
adantl |
|- ( ( A e. QQ /\ A e. CC ) -> ( Xp ` A ) = A ) |
52 |
|
fvconst2g |
|- ( ( A e. QQ /\ A e. CC ) -> ( ( CC X. { A } ) ` A ) = A ) |
53 |
25 26 28 28 29 51 52
|
ofval |
|- ( ( A e. QQ /\ A e. CC ) -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = ( A - A ) ) |
54 |
1 53
|
mpdan |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = ( A - A ) ) |
55 |
1
|
subidd |
|- ( A e. QQ -> ( A - A ) = 0 ) |
56 |
54 55
|
eqtrd |
|- ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) |
57 |
|
fveq1 |
|- ( f = ( Xp oF - ( CC X. { A } ) ) -> ( f ` A ) = ( ( Xp oF - ( CC X. { A } ) ) ` A ) ) |
58 |
57
|
eqeq1d |
|- ( f = ( Xp oF - ( CC X. { A } ) ) -> ( ( f ` A ) = 0 <-> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) ) |
59 |
58
|
rspcev |
|- ( ( ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) -> E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) |
60 |
47 56 59
|
syl2anc |
|- ( A e. QQ -> E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) |
61 |
|
elqaa |
|- ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) ) |
62 |
1 60 61
|
sylanbrc |
|- ( A e. QQ -> A e. AA ) |