| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qcn |  |-  ( A e. QQ -> A e. CC ) | 
						
							| 2 |  | qsscn |  |-  QQ C_ CC | 
						
							| 3 |  | 1z |  |-  1 e. ZZ | 
						
							| 4 |  | zq |  |-  ( 1 e. ZZ -> 1 e. QQ ) | 
						
							| 5 | 3 4 | ax-mp |  |-  1 e. QQ | 
						
							| 6 |  | plyid |  |-  ( ( QQ C_ CC /\ 1 e. QQ ) -> Xp e. ( Poly ` QQ ) ) | 
						
							| 7 | 2 5 6 | mp2an |  |-  Xp e. ( Poly ` QQ ) | 
						
							| 8 | 7 | a1i |  |-  ( A e. QQ -> Xp e. ( Poly ` QQ ) ) | 
						
							| 9 |  | plyconst |  |-  ( ( QQ C_ CC /\ A e. QQ ) -> ( CC X. { A } ) e. ( Poly ` QQ ) ) | 
						
							| 10 | 2 9 | mpan |  |-  ( A e. QQ -> ( CC X. { A } ) e. ( Poly ` QQ ) ) | 
						
							| 11 |  | qaddcl |  |-  ( ( x e. QQ /\ y e. QQ ) -> ( x + y ) e. QQ ) | 
						
							| 12 | 11 | adantl |  |-  ( ( A e. QQ /\ ( x e. QQ /\ y e. QQ ) ) -> ( x + y ) e. QQ ) | 
						
							| 13 |  | qmulcl |  |-  ( ( x e. QQ /\ y e. QQ ) -> ( x x. y ) e. QQ ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. QQ /\ ( x e. QQ /\ y e. QQ ) ) -> ( x x. y ) e. QQ ) | 
						
							| 15 |  | qnegcl |  |-  ( 1 e. QQ -> -u 1 e. QQ ) | 
						
							| 16 | 5 15 | ax-mp |  |-  -u 1 e. QQ | 
						
							| 17 | 16 | a1i |  |-  ( A e. QQ -> -u 1 e. QQ ) | 
						
							| 18 | 8 10 12 14 17 | plysub |  |-  ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` QQ ) ) | 
						
							| 19 |  | peano2cn |  |-  ( A e. CC -> ( A + 1 ) e. CC ) | 
						
							| 20 | 1 19 | syl |  |-  ( A e. QQ -> ( A + 1 ) e. CC ) | 
						
							| 21 |  | fnresi |  |-  ( _I |` CC ) Fn CC | 
						
							| 22 |  | df-idp |  |-  Xp = ( _I |` CC ) | 
						
							| 23 | 22 | fneq1i |  |-  ( Xp Fn CC <-> ( _I |` CC ) Fn CC ) | 
						
							| 24 | 21 23 | mpbir |  |-  Xp Fn CC | 
						
							| 25 | 24 | a1i |  |-  ( A e. QQ -> Xp Fn CC ) | 
						
							| 26 |  | fnconstg |  |-  ( A e. QQ -> ( CC X. { A } ) Fn CC ) | 
						
							| 27 |  | cnex |  |-  CC e. _V | 
						
							| 28 | 27 | a1i |  |-  ( A e. QQ -> CC e. _V ) | 
						
							| 29 |  | inidm |  |-  ( CC i^i CC ) = CC | 
						
							| 30 | 22 | fveq1i |  |-  ( Xp ` ( A + 1 ) ) = ( ( _I |` CC ) ` ( A + 1 ) ) | 
						
							| 31 |  | fvresi |  |-  ( ( A + 1 ) e. CC -> ( ( _I |` CC ) ` ( A + 1 ) ) = ( A + 1 ) ) | 
						
							| 32 | 30 31 | eqtrid |  |-  ( ( A + 1 ) e. CC -> ( Xp ` ( A + 1 ) ) = ( A + 1 ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( Xp ` ( A + 1 ) ) = ( A + 1 ) ) | 
						
							| 34 |  | fvconst2g |  |-  ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( ( CC X. { A } ) ` ( A + 1 ) ) = A ) | 
						
							| 35 | 25 26 28 28 29 33 34 | ofval |  |-  ( ( A e. QQ /\ ( A + 1 ) e. CC ) -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = ( ( A + 1 ) - A ) ) | 
						
							| 36 | 20 35 | mpdan |  |-  ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = ( ( A + 1 ) - A ) ) | 
						
							| 37 |  | ax-1cn |  |-  1 e. CC | 
						
							| 38 |  | pncan2 |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - A ) = 1 ) | 
						
							| 39 | 1 37 38 | sylancl |  |-  ( A e. QQ -> ( ( A + 1 ) - A ) = 1 ) | 
						
							| 40 | 36 39 | eqtrd |  |-  ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) = 1 ) | 
						
							| 41 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 42 | 41 | a1i |  |-  ( A e. QQ -> 1 =/= 0 ) | 
						
							| 43 | 40 42 | eqnetrd |  |-  ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) =/= 0 ) | 
						
							| 44 |  | ne0p |  |-  ( ( ( A + 1 ) e. CC /\ ( ( Xp oF - ( CC X. { A } ) ) ` ( A + 1 ) ) =/= 0 ) -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) | 
						
							| 45 | 20 43 44 | syl2anc |  |-  ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) =/= 0p ) | 
						
							| 46 |  | eldifsn |  |-  ( ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( ( Xp oF - ( CC X. { A } ) ) e. ( Poly ` QQ ) /\ ( Xp oF - ( CC X. { A } ) ) =/= 0p ) ) | 
						
							| 47 | 18 45 46 | sylanbrc |  |-  ( A e. QQ -> ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) ) | 
						
							| 48 | 22 | fveq1i |  |-  ( Xp ` A ) = ( ( _I |` CC ) ` A ) | 
						
							| 49 |  | fvresi |  |-  ( A e. CC -> ( ( _I |` CC ) ` A ) = A ) | 
						
							| 50 | 48 49 | eqtrid |  |-  ( A e. CC -> ( Xp ` A ) = A ) | 
						
							| 51 | 50 | adantl |  |-  ( ( A e. QQ /\ A e. CC ) -> ( Xp ` A ) = A ) | 
						
							| 52 |  | fvconst2g |  |-  ( ( A e. QQ /\ A e. CC ) -> ( ( CC X. { A } ) ` A ) = A ) | 
						
							| 53 | 25 26 28 28 29 51 52 | ofval |  |-  ( ( A e. QQ /\ A e. CC ) -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = ( A - A ) ) | 
						
							| 54 | 1 53 | mpdan |  |-  ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = ( A - A ) ) | 
						
							| 55 | 1 | subidd |  |-  ( A e. QQ -> ( A - A ) = 0 ) | 
						
							| 56 | 54 55 | eqtrd |  |-  ( A e. QQ -> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) | 
						
							| 57 |  | fveq1 |  |-  ( f = ( Xp oF - ( CC X. { A } ) ) -> ( f ` A ) = ( ( Xp oF - ( CC X. { A } ) ) ` A ) ) | 
						
							| 58 | 57 | eqeq1d |  |-  ( f = ( Xp oF - ( CC X. { A } ) ) -> ( ( f ` A ) = 0 <-> ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) ) | 
						
							| 59 | 58 | rspcev |  |-  ( ( ( Xp oF - ( CC X. { A } ) ) e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( ( Xp oF - ( CC X. { A } ) ) ` A ) = 0 ) -> E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) | 
						
							| 60 | 47 56 59 | syl2anc |  |-  ( A e. QQ -> E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) | 
						
							| 61 |  | elqaa |  |-  ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` QQ ) \ { 0p } ) ( f ` A ) = 0 ) ) | 
						
							| 62 | 1 60 61 | sylanbrc |  |-  ( A e. QQ -> A e. AA ) |