| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 2 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 3 |
|
qbtwnre |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 4 |
3
|
3expia |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 5 |
|
simpl |
|- ( ( A e. RR /\ B = +oo ) -> A e. RR ) |
| 6 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
| 7 |
6
|
adantr |
|- ( ( A e. RR /\ B = +oo ) -> ( A + 1 ) e. RR ) |
| 8 |
|
ltp1 |
|- ( A e. RR -> A < ( A + 1 ) ) |
| 9 |
8
|
adantr |
|- ( ( A e. RR /\ B = +oo ) -> A < ( A + 1 ) ) |
| 10 |
|
qbtwnre |
|- ( ( A e. RR /\ ( A + 1 ) e. RR /\ A < ( A + 1 ) ) -> E. x e. QQ ( A < x /\ x < ( A + 1 ) ) ) |
| 11 |
5 7 9 10
|
syl3anc |
|- ( ( A e. RR /\ B = +oo ) -> E. x e. QQ ( A < x /\ x < ( A + 1 ) ) ) |
| 12 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
| 13 |
12
|
ltpnfd |
|- ( x e. QQ -> x < +oo ) |
| 14 |
13
|
adantl |
|- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> x < +oo ) |
| 15 |
|
simplr |
|- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> B = +oo ) |
| 16 |
14 15
|
breqtrrd |
|- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> x < B ) |
| 17 |
16
|
a1d |
|- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> ( x < ( A + 1 ) -> x < B ) ) |
| 18 |
17
|
anim2d |
|- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> ( ( A < x /\ x < ( A + 1 ) ) -> ( A < x /\ x < B ) ) ) |
| 19 |
18
|
reximdva |
|- ( ( A e. RR /\ B = +oo ) -> ( E. x e. QQ ( A < x /\ x < ( A + 1 ) ) -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 20 |
11 19
|
mpd |
|- ( ( A e. RR /\ B = +oo ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 21 |
20
|
a1d |
|- ( ( A e. RR /\ B = +oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 22 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 23 |
|
breq2 |
|- ( B = -oo -> ( A < B <-> A < -oo ) ) |
| 24 |
23
|
adantl |
|- ( ( A e. RR* /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
| 25 |
|
nltmnf |
|- ( A e. RR* -> -. A < -oo ) |
| 26 |
25
|
adantr |
|- ( ( A e. RR* /\ B = -oo ) -> -. A < -oo ) |
| 27 |
26
|
pm2.21d |
|- ( ( A e. RR* /\ B = -oo ) -> ( A < -oo -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 28 |
24 27
|
sylbid |
|- ( ( A e. RR* /\ B = -oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 29 |
22 28
|
sylan |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 30 |
4 21 29
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 31 |
2 30
|
sylan2b |
|- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 32 |
|
breq1 |
|- ( A = +oo -> ( A < B <-> +oo < B ) ) |
| 33 |
32
|
adantr |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
| 34 |
|
pnfnlt |
|- ( B e. RR* -> -. +oo < B ) |
| 35 |
34
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
| 36 |
35
|
pm2.21d |
|- ( ( A = +oo /\ B e. RR* ) -> ( +oo < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 37 |
33 36
|
sylbid |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 38 |
|
peano2rem |
|- ( B e. RR -> ( B - 1 ) e. RR ) |
| 39 |
38
|
adantl |
|- ( ( A = -oo /\ B e. RR ) -> ( B - 1 ) e. RR ) |
| 40 |
|
simpr |
|- ( ( A = -oo /\ B e. RR ) -> B e. RR ) |
| 41 |
|
ltm1 |
|- ( B e. RR -> ( B - 1 ) < B ) |
| 42 |
41
|
adantl |
|- ( ( A = -oo /\ B e. RR ) -> ( B - 1 ) < B ) |
| 43 |
|
qbtwnre |
|- ( ( ( B - 1 ) e. RR /\ B e. RR /\ ( B - 1 ) < B ) -> E. x e. QQ ( ( B - 1 ) < x /\ x < B ) ) |
| 44 |
39 40 42 43
|
syl3anc |
|- ( ( A = -oo /\ B e. RR ) -> E. x e. QQ ( ( B - 1 ) < x /\ x < B ) ) |
| 45 |
|
simpll |
|- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> A = -oo ) |
| 46 |
12
|
adantl |
|- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> x e. RR ) |
| 47 |
46
|
mnfltd |
|- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> -oo < x ) |
| 48 |
45 47
|
eqbrtrd |
|- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> A < x ) |
| 49 |
48
|
a1d |
|- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> ( ( B - 1 ) < x -> A < x ) ) |
| 50 |
49
|
anim1d |
|- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> ( ( ( B - 1 ) < x /\ x < B ) -> ( A < x /\ x < B ) ) ) |
| 51 |
50
|
reximdva |
|- ( ( A = -oo /\ B e. RR ) -> ( E. x e. QQ ( ( B - 1 ) < x /\ x < B ) -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 52 |
44 51
|
mpd |
|- ( ( A = -oo /\ B e. RR ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 53 |
52
|
a1d |
|- ( ( A = -oo /\ B e. RR ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 54 |
|
1re |
|- 1 e. RR |
| 55 |
|
mnflt |
|- ( 1 e. RR -> -oo < 1 ) |
| 56 |
54 55
|
ax-mp |
|- -oo < 1 |
| 57 |
|
breq1 |
|- ( A = -oo -> ( A < 1 <-> -oo < 1 ) ) |
| 58 |
56 57
|
mpbiri |
|- ( A = -oo -> A < 1 ) |
| 59 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
| 60 |
54 59
|
ax-mp |
|- 1 < +oo |
| 61 |
|
breq2 |
|- ( B = +oo -> ( 1 < B <-> 1 < +oo ) ) |
| 62 |
60 61
|
mpbiri |
|- ( B = +oo -> 1 < B ) |
| 63 |
|
1z |
|- 1 e. ZZ |
| 64 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
| 65 |
63 64
|
ax-mp |
|- 1 e. QQ |
| 66 |
|
breq2 |
|- ( x = 1 -> ( A < x <-> A < 1 ) ) |
| 67 |
|
breq1 |
|- ( x = 1 -> ( x < B <-> 1 < B ) ) |
| 68 |
66 67
|
anbi12d |
|- ( x = 1 -> ( ( A < x /\ x < B ) <-> ( A < 1 /\ 1 < B ) ) ) |
| 69 |
68
|
rspcev |
|- ( ( 1 e. QQ /\ ( A < 1 /\ 1 < B ) ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 70 |
65 69
|
mpan |
|- ( ( A < 1 /\ 1 < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 71 |
58 62 70
|
syl2an |
|- ( ( A = -oo /\ B = +oo ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 72 |
71
|
a1d |
|- ( ( A = -oo /\ B = +oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 73 |
|
3mix3 |
|- ( A = -oo -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 74 |
73 1
|
sylibr |
|- ( A = -oo -> A e. RR* ) |
| 75 |
74 28
|
sylan |
|- ( ( A = -oo /\ B = -oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 76 |
53 72 75
|
3jaodan |
|- ( ( A = -oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 77 |
2 76
|
sylan2b |
|- ( ( A = -oo /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 78 |
31 37 77
|
3jaoian |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 79 |
1 78
|
sylanb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 80 |
79
|
3impia |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |