Metamath Proof Explorer


Theorem qcn

Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion qcn
|- ( A e. QQ -> A e. CC )

Proof

Step Hyp Ref Expression
1 qsscn
 |-  QQ C_ CC
2 1 sseli
 |-  ( A e. QQ -> A e. CC )