Step |
Hyp |
Ref |
Expression |
1 |
|
qcvs.q |
|- Q = ( ringLMod ` ( CCfld |`s QQ ) ) |
2 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
3 |
|
drngring |
|- ( ( CCfld |`s QQ ) e. DivRing -> ( CCfld |`s QQ ) e. Ring ) |
4 |
3
|
adantl |
|- ( ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) -> ( CCfld |`s QQ ) e. Ring ) |
5 |
2 4
|
ax-mp |
|- ( CCfld |`s QQ ) e. Ring |
6 |
|
rlmlmod |
|- ( ( CCfld |`s QQ ) e. Ring -> ( ringLMod ` ( CCfld |`s QQ ) ) e. LMod ) |
7 |
5 6
|
ax-mp |
|- ( ringLMod ` ( CCfld |`s QQ ) ) e. LMod |
8 |
2
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
9 |
|
rlmsca |
|- ( ( CCfld |`s QQ ) e. DivRing -> ( CCfld |`s QQ ) = ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) ) |
10 |
9
|
eqcomd |
|- ( ( CCfld |`s QQ ) e. DivRing -> ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( CCfld |`s QQ ) ) |
11 |
8 10
|
ax-mp |
|- ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( CCfld |`s QQ ) |
12 |
2
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
13 |
|
eqid |
|- ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) |
14 |
13
|
isclmi |
|- ( ( ( ringLMod ` ( CCfld |`s QQ ) ) e. LMod /\ ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( CCfld |`s QQ ) /\ QQ e. ( SubRing ` CCfld ) ) -> ( ringLMod ` ( CCfld |`s QQ ) ) e. CMod ) |
15 |
7 11 12 14
|
mp3an |
|- ( ringLMod ` ( CCfld |`s QQ ) ) e. CMod |
16 |
|
rlmlvec |
|- ( ( CCfld |`s QQ ) e. DivRing -> ( ringLMod ` ( CCfld |`s QQ ) ) e. LVec ) |
17 |
8 16
|
ax-mp |
|- ( ringLMod ` ( CCfld |`s QQ ) ) e. LVec |
18 |
15 17
|
elini |
|- ( ringLMod ` ( CCfld |`s QQ ) ) e. ( CMod i^i LVec ) |
19 |
|
df-cvs |
|- CVec = ( CMod i^i LVec ) |
20 |
18 1 19
|
3eltr4i |
|- Q e. CVec |