Step |
Hyp |
Ref |
Expression |
1 |
|
qeqnumdivden |
|- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
2 |
1
|
adantr |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
3 |
|
oveq2 |
|- ( ( denom ` A ) = 1 -> ( ( numer ` A ) / ( denom ` A ) ) = ( ( numer ` A ) / 1 ) ) |
4 |
3
|
adantl |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( ( numer ` A ) / ( denom ` A ) ) = ( ( numer ` A ) / 1 ) ) |
5 |
|
qnumcl |
|- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
6 |
5
|
adantr |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( numer ` A ) e. ZZ ) |
7 |
6
|
zcnd |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( numer ` A ) e. CC ) |
8 |
7
|
div1d |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( ( numer ` A ) / 1 ) = ( numer ` A ) ) |
9 |
2 4 8
|
3eqtrd |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A = ( numer ` A ) ) |
10 |
9 6
|
eqeltrd |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A e. ZZ ) |
11 |
|
simpr |
|- ( ( A e. QQ /\ A e. ZZ ) -> A e. ZZ ) |
12 |
11
|
zcnd |
|- ( ( A e. QQ /\ A e. ZZ ) -> A e. CC ) |
13 |
12
|
div1d |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( A / 1 ) = A ) |
14 |
13
|
fveq2d |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` ( A / 1 ) ) = ( denom ` A ) ) |
15 |
|
1nn |
|- 1 e. NN |
16 |
|
divdenle |
|- ( ( A e. ZZ /\ 1 e. NN ) -> ( denom ` ( A / 1 ) ) <_ 1 ) |
17 |
11 15 16
|
sylancl |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` ( A / 1 ) ) <_ 1 ) |
18 |
14 17
|
eqbrtrrd |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) <_ 1 ) |
19 |
|
qdencl |
|- ( A e. QQ -> ( denom ` A ) e. NN ) |
20 |
19
|
adantr |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) e. NN ) |
21 |
|
nnle1eq1 |
|- ( ( denom ` A ) e. NN -> ( ( denom ` A ) <_ 1 <-> ( denom ` A ) = 1 ) ) |
22 |
20 21
|
syl |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( ( denom ` A ) <_ 1 <-> ( denom ` A ) = 1 ) ) |
23 |
18 22
|
mpbid |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) = 1 ) |
24 |
10 23
|
impbida |
|- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |