Metamath Proof Explorer


Theorem qdensere2

Description: QQ is dense in RR . (Contributed by NM, 24-Aug-2007)

Ref Expression
Hypotheses remet.1
|- D = ( ( abs o. - ) |` ( RR X. RR ) )
tgioo.2
|- J = ( MetOpen ` D )
Assertion qdensere2
|- ( ( cls ` J ) ` QQ ) = RR

Proof

Step Hyp Ref Expression
1 remet.1
 |-  D = ( ( abs o. - ) |` ( RR X. RR ) )
2 tgioo.2
 |-  J = ( MetOpen ` D )
3 1 2 tgioo
 |-  ( topGen ` ran (,) ) = J
4 3 fveq2i
 |-  ( cls ` ( topGen ` ran (,) ) ) = ( cls ` J )
5 4 fveq1i
 |-  ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = ( ( cls ` J ) ` QQ )
6 qdensere
 |-  ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR
7 5 6 eqtr3i
 |-  ( ( cls ` J ) ` QQ ) = RR