Step |
Hyp |
Ref |
Expression |
1 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
2 |
|
qcn |
|- ( B e. QQ -> B e. CC ) |
3 |
|
id |
|- ( B =/= 0 -> B =/= 0 ) |
4 |
|
divrec |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
6 |
|
qreccl |
|- ( ( B e. QQ /\ B =/= 0 ) -> ( 1 / B ) e. QQ ) |
7 |
|
qmulcl |
|- ( ( A e. QQ /\ ( 1 / B ) e. QQ ) -> ( A x. ( 1 / B ) ) e. QQ ) |
8 |
6 7
|
sylan2 |
|- ( ( A e. QQ /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A x. ( 1 / B ) ) e. QQ ) |
9 |
8
|
3impb |
|- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A x. ( 1 / B ) ) e. QQ ) |
10 |
5 9
|
eqeltrd |
|- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) e. QQ ) |