Description: The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qrng.q | |- Q = ( CCfld |`s QQ ) |
|
| Assertion | qdrng | |- Q e. DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qrng.q | |- Q = ( CCfld |`s QQ ) |
|
| 2 | qsubdrg | |- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
|
| 3 | 2 | simpri | |- ( CCfld |`s QQ ) e. DivRing |
| 4 | 1 3 | eqeltri | |- Q e. DivRing |