Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
|- ( A e. QQ -> ( numer ` A ) = ( numer ` A ) ) |
2 |
|
eqid |
|- ( denom ` A ) = ( denom ` A ) |
3 |
1 2
|
jctir |
|- ( A e. QQ -> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) |
4 |
|
qnumcl |
|- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
5 |
|
qdencl |
|- ( A e. QQ -> ( denom ` A ) e. NN ) |
6 |
|
qnumdenbi |
|- ( ( A e. QQ /\ ( numer ` A ) e. ZZ /\ ( denom ` A ) e. NN ) -> ( ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) <-> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) ) |
7 |
4 5 6
|
mpd3an23 |
|- ( A e. QQ -> ( ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) <-> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) ) |
8 |
3 7
|
mpbird |
|- ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) ) |
9 |
8
|
simprd |
|- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |