| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd |  |-  ( A e. QQ -> ( numer ` A ) = ( numer ` A ) ) | 
						
							| 2 |  | eqid |  |-  ( denom ` A ) = ( denom ` A ) | 
						
							| 3 | 1 2 | jctir |  |-  ( A e. QQ -> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) | 
						
							| 4 |  | qnumcl |  |-  ( A e. QQ -> ( numer ` A ) e. ZZ ) | 
						
							| 5 |  | qdencl |  |-  ( A e. QQ -> ( denom ` A ) e. NN ) | 
						
							| 6 |  | qnumdenbi |  |-  ( ( A e. QQ /\ ( numer ` A ) e. ZZ /\ ( denom ` A ) e. NN ) -> ( ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) <-> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) ) | 
						
							| 7 | 4 5 6 | mpd3an23 |  |-  ( A e. QQ -> ( ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) <-> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) ) | 
						
							| 8 | 3 7 | mpbird |  |-  ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) ) | 
						
							| 9 | 8 | simprd |  |-  ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |