| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlkn.w |
|- W = ( N ClWWalksN G ) |
| 2 |
|
erclwwlkn.r |
|- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
| 3 |
|
clwwlknfi |
|- ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) |
| 4 |
1 3
|
eqeltrid |
|- ( ( Vtx ` G ) e. Fin -> W e. Fin ) |
| 5 |
|
pwfi |
|- ( W e. Fin <-> ~P W e. Fin ) |
| 6 |
4 5
|
sylib |
|- ( ( Vtx ` G ) e. Fin -> ~P W e. Fin ) |
| 7 |
1 2
|
erclwwlkn |
|- .~ Er W |
| 8 |
7
|
a1i |
|- ( ( Vtx ` G ) e. Fin -> .~ Er W ) |
| 9 |
8
|
qsss |
|- ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) C_ ~P W ) |
| 10 |
6 9
|
ssfid |
|- ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) e. Fin ) |