Description: Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | qexpclz | |- ( ( A e. QQ /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. QQ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsscn | |- QQ C_ CC |
|
2 | qmulcl | |- ( ( x e. QQ /\ y e. QQ ) -> ( x x. y ) e. QQ ) |
|
3 | 1z | |- 1 e. ZZ |
|
4 | zq | |- ( 1 e. ZZ -> 1 e. QQ ) |
|
5 | 3 4 | ax-mp | |- 1 e. QQ |
6 | qreccl | |- ( ( x e. QQ /\ x =/= 0 ) -> ( 1 / x ) e. QQ ) |
|
7 | 1 2 5 6 | expcl2lem | |- ( ( A e. QQ /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. QQ ) |