| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qbtwnxr |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 2 |
1
|
3expia |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 3 |
|
simprl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> A < x ) |
| 4 |
|
simplll |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> A e. RR* ) |
| 5 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
| 6 |
5
|
rexrd |
|- ( x e. QQ -> x e. RR* ) |
| 7 |
6
|
ad2antlr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> x e. RR* ) |
| 8 |
|
xrltnle |
|- ( ( A e. RR* /\ x e. RR* ) -> ( A < x <-> -. x <_ A ) ) |
| 9 |
4 7 8
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( A < x <-> -. x <_ A ) ) |
| 10 |
3 9
|
mpbid |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. x <_ A ) |
| 11 |
|
xrltle |
|- ( ( x e. RR* /\ A e. RR* ) -> ( x < A -> x <_ A ) ) |
| 12 |
7 4 11
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( x < A -> x <_ A ) ) |
| 13 |
10 12
|
mtod |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. x < A ) |
| 14 |
|
simprr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> x < B ) |
| 15 |
13 14
|
2thd |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( -. x < A <-> x < B ) ) |
| 16 |
|
nbbn |
|- ( ( -. x < A <-> x < B ) <-> -. ( x < A <-> x < B ) ) |
| 17 |
15 16
|
sylib |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. ( x < A <-> x < B ) ) |
| 18 |
|
simpllr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> B e. RR* ) |
| 19 |
7 18 14
|
xrltled |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> x <_ B ) |
| 20 |
10 19
|
2thd |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( -. x <_ A <-> x <_ B ) ) |
| 21 |
|
nbbn |
|- ( ( -. x <_ A <-> x <_ B ) <-> -. ( x <_ A <-> x <_ B ) ) |
| 22 |
20 21
|
sylib |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. ( x <_ A <-> x <_ B ) ) |
| 23 |
17 22
|
jca |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) |
| 24 |
23
|
ex |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) -> ( ( A < x /\ x < B ) -> ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) ) |
| 25 |
24
|
reximdva |
|- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. QQ ( A < x /\ x < B ) -> E. x e. QQ ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) ) |
| 26 |
2 25
|
syld |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) ) |