Metamath Proof Explorer


Theorem qgt0numnn

Description: A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion qgt0numnn
|- ( ( A e. QQ /\ 0 < A ) -> ( numer ` A ) e. NN )

Proof

Step Hyp Ref Expression
1 qnumcl
 |-  ( A e. QQ -> ( numer ` A ) e. ZZ )
2 1 adantr
 |-  ( ( A e. QQ /\ 0 < A ) -> ( numer ` A ) e. ZZ )
3 qnumgt0
 |-  ( A e. QQ -> ( 0 < A <-> 0 < ( numer ` A ) ) )
4 3 biimpa
 |-  ( ( A e. QQ /\ 0 < A ) -> 0 < ( numer ` A ) )
5 elnnz
 |-  ( ( numer ` A ) e. NN <-> ( ( numer ` A ) e. ZZ /\ 0 < ( numer ` A ) ) )
6 2 4 5 sylanbrc
 |-  ( ( A e. QQ /\ 0 < A ) -> ( numer ` A ) e. NN )