Description: A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | qgt0numnn | |- ( ( A e. QQ /\ 0 < A ) -> ( numer ` A ) e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumcl | |- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
|
2 | 1 | adantr | |- ( ( A e. QQ /\ 0 < A ) -> ( numer ` A ) e. ZZ ) |
3 | qnumgt0 | |- ( A e. QQ -> ( 0 < A <-> 0 < ( numer ` A ) ) ) |
|
4 | 3 | biimpa | |- ( ( A e. QQ /\ 0 < A ) -> 0 < ( numer ` A ) ) |
5 | elnnz | |- ( ( numer ` A ) e. NN <-> ( ( numer ` A ) e. ZZ /\ 0 < ( numer ` A ) ) ) |
|
6 | 2 4 5 | sylanbrc | |- ( ( A e. QQ /\ 0 < A ) -> ( numer ` A ) e. NN ) |