Metamath Proof Explorer


Theorem qinioo

Description: The rational numbers are dense in RR . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qinioo.a
|- ( ph -> A e. RR* )
qinioo.b
|- ( ph -> B e. RR* )
Assertion qinioo
|- ( ph -> ( ( QQ i^i ( A (,) B ) ) = (/) <-> B <_ A ) )

Proof

Step Hyp Ref Expression
1 qinioo.a
 |-  ( ph -> A e. RR* )
2 qinioo.b
 |-  ( ph -> B e. RR* )
3 simplr
 |-  ( ( ( ph /\ ( QQ i^i ( A (,) B ) ) = (/) ) /\ -. B <_ A ) -> ( QQ i^i ( A (,) B ) ) = (/) )
4 1 2 xrltnled
 |-  ( ph -> ( A < B <-> -. B <_ A ) )
5 4 biimpar
 |-  ( ( ph /\ -. B <_ A ) -> A < B )
6 1 adantr
 |-  ( ( ph /\ A < B ) -> A e. RR* )
7 2 adantr
 |-  ( ( ph /\ A < B ) -> B e. RR* )
8 simpr
 |-  ( ( ph /\ A < B ) -> A < B )
9 qbtwnxr
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. q e. QQ ( A < q /\ q < B ) )
10 6 7 8 9 syl3anc
 |-  ( ( ph /\ A < B ) -> E. q e. QQ ( A < q /\ q < B ) )
11 1 ad2antrr
 |-  ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> A e. RR* )
12 2 ad2antrr
 |-  ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> B e. RR* )
13 qre
 |-  ( q e. QQ -> q e. RR )
14 13 ad2antlr
 |-  ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> q e. RR )
15 simprl
 |-  ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> A < q )
16 simprr
 |-  ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> q < B )
17 11 12 14 15 16 eliood
 |-  ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> q e. ( A (,) B ) )
18 17 ex
 |-  ( ( ph /\ q e. QQ ) -> ( ( A < q /\ q < B ) -> q e. ( A (,) B ) ) )
19 18 adantlr
 |-  ( ( ( ph /\ A < B ) /\ q e. QQ ) -> ( ( A < q /\ q < B ) -> q e. ( A (,) B ) ) )
20 19 reximdva
 |-  ( ( ph /\ A < B ) -> ( E. q e. QQ ( A < q /\ q < B ) -> E. q e. QQ q e. ( A (,) B ) ) )
21 10 20 mpd
 |-  ( ( ph /\ A < B ) -> E. q e. QQ q e. ( A (,) B ) )
22 inn0
 |-  ( ( QQ i^i ( A (,) B ) ) =/= (/) <-> E. q e. QQ q e. ( A (,) B ) )
23 21 22 sylibr
 |-  ( ( ph /\ A < B ) -> ( QQ i^i ( A (,) B ) ) =/= (/) )
24 5 23 syldan
 |-  ( ( ph /\ -. B <_ A ) -> ( QQ i^i ( A (,) B ) ) =/= (/) )
25 24 neneqd
 |-  ( ( ph /\ -. B <_ A ) -> -. ( QQ i^i ( A (,) B ) ) = (/) )
26 25 adantlr
 |-  ( ( ( ph /\ ( QQ i^i ( A (,) B ) ) = (/) ) /\ -. B <_ A ) -> -. ( QQ i^i ( A (,) B ) ) = (/) )
27 3 26 condan
 |-  ( ( ph /\ ( QQ i^i ( A (,) B ) ) = (/) ) -> B <_ A )
28 ioo0
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) )
29 1 2 28 syl2anc
 |-  ( ph -> ( ( A (,) B ) = (/) <-> B <_ A ) )
30 29 biimpar
 |-  ( ( ph /\ B <_ A ) -> ( A (,) B ) = (/) )
31 ineq2
 |-  ( ( A (,) B ) = (/) -> ( QQ i^i ( A (,) B ) ) = ( QQ i^i (/) ) )
32 in0
 |-  ( QQ i^i (/) ) = (/)
33 31 32 eqtrdi
 |-  ( ( A (,) B ) = (/) -> ( QQ i^i ( A (,) B ) ) = (/) )
34 30 33 syl
 |-  ( ( ph /\ B <_ A ) -> ( QQ i^i ( A (,) B ) ) = (/) )
35 27 34 impbida
 |-  ( ph -> ( ( QQ i^i ( A (,) B ) ) = (/) <-> B <_ A ) )