| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qlaxr3.1 |
|- A e. CH |
| 2 |
|
qlaxr3.2 |
|- B e. CH |
| 3 |
|
qlaxr3.3 |
|- C e. CH |
| 4 |
|
qlaxr3.4 |
|- ( C vH ( _|_ ` C ) ) = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) |
| 5 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
| 6 |
5
|
chshii |
|- ( A vH B ) e. SH |
| 7 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
| 8 |
|
incom |
|- ( ( A vH B ) i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) |
| 9 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 10 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 11 |
1 2
|
cmj1i |
|- A C_H ( A vH B ) |
| 12 |
1 5 11
|
cmcmii |
|- ( A vH B ) C_H A |
| 13 |
5 1 12
|
cmcm2ii |
|- ( A vH B ) C_H ( _|_ ` A ) |
| 14 |
1 2
|
cmj2i |
|- B C_H ( A vH B ) |
| 15 |
2 5 14
|
cmcmii |
|- ( A vH B ) C_H B |
| 16 |
5 2 15
|
cmcm2ii |
|- ( A vH B ) C_H ( _|_ ` B ) |
| 17 |
5 9 10 13 16
|
fh1i |
|- ( ( A vH B ) i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) |
| 18 |
8 17
|
eqtr3i |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) |
| 19 |
3
|
chjoi |
|- ( C vH ( _|_ ` C ) ) = ~H |
| 20 |
19 4
|
eqtr3i |
|- ~H = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) |
| 21 |
|
choc0 |
|- ( _|_ ` 0H ) = ~H |
| 22 |
9 10
|
chjcli |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
| 23 |
22 5
|
chdmm1i |
|- ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) |
| 24 |
20 21 23
|
3eqtr4i |
|- ( _|_ ` 0H ) = ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) |
| 25 |
22 5
|
chincli |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) e. CH |
| 26 |
|
h0elch |
|- 0H e. CH |
| 27 |
25 26
|
chcon3i |
|- ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = 0H <-> ( _|_ ` 0H ) = ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) ) |
| 28 |
24 27
|
mpbir |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = 0H |
| 29 |
18 28
|
eqtr3i |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) = 0H |
| 30 |
5 9
|
chincli |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) e. CH |
| 31 |
5 10
|
chincli |
|- ( ( A vH B ) i^i ( _|_ ` B ) ) e. CH |
| 32 |
30 31
|
chj00i |
|- ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H /\ ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) = 0H ) |
| 33 |
29 32
|
mpbir |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H /\ ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H ) |
| 34 |
33
|
simpli |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H |
| 35 |
1 6 7 34
|
omlsii |
|- A = ( A vH B ) |
| 36 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
| 37 |
33
|
simpri |
|- ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H |
| 38 |
2 6 36 37
|
omlsii |
|- B = ( A vH B ) |
| 39 |
35 38
|
eqtr4i |
|- A = B |