Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
|- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
2 |
|
qlift.2 |
|- ( ( ph /\ x e. X ) -> A e. Y ) |
3 |
|
qlift.3 |
|- ( ph -> R Er X ) |
4 |
|
qlift.4 |
|- ( ph -> X e. V ) |
5 |
1 2 3 4
|
qliftlem |
|- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
6 |
1 5 2
|
fliftel |
|- ( ph -> ( [ C ] R F D <-> E. x e. X ( [ C ] R = [ x ] R /\ D = A ) ) ) |
7 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> R Er X ) |
8 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
9 |
7 8
|
erth2 |
|- ( ( ph /\ x e. X ) -> ( C R x <-> [ C ] R = [ x ] R ) ) |
10 |
9
|
anbi1d |
|- ( ( ph /\ x e. X ) -> ( ( C R x /\ D = A ) <-> ( [ C ] R = [ x ] R /\ D = A ) ) ) |
11 |
10
|
rexbidva |
|- ( ph -> ( E. x e. X ( C R x /\ D = A ) <-> E. x e. X ( [ C ] R = [ x ] R /\ D = A ) ) ) |
12 |
6 11
|
bitr4d |
|- ( ph -> ( [ C ] R F D <-> E. x e. X ( C R x /\ D = A ) ) ) |