| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlift.1 |  |-  F = ran ( x e. X |-> <. [ x ] R , A >. ) | 
						
							| 2 |  | qlift.2 |  |-  ( ( ph /\ x e. X ) -> A e. Y ) | 
						
							| 3 |  | qlift.3 |  |-  ( ph -> R Er X ) | 
						
							| 4 |  | qlift.4 |  |-  ( ph -> X e. V ) | 
						
							| 5 | 1 2 3 4 | qliftlem |  |-  ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) | 
						
							| 6 | 1 5 2 | fliftel |  |-  ( ph -> ( [ C ] R F D <-> E. x e. X ( [ C ] R = [ x ] R /\ D = A ) ) ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> R Er X ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ x e. X ) -> x e. X ) | 
						
							| 9 | 7 8 | erth2 |  |-  ( ( ph /\ x e. X ) -> ( C R x <-> [ C ] R = [ x ] R ) ) | 
						
							| 10 | 9 | anbi1d |  |-  ( ( ph /\ x e. X ) -> ( ( C R x /\ D = A ) <-> ( [ C ] R = [ x ] R /\ D = A ) ) ) | 
						
							| 11 | 10 | rexbidva |  |-  ( ph -> ( E. x e. X ( C R x /\ D = A ) <-> E. x e. X ( [ C ] R = [ x ] R /\ D = A ) ) ) | 
						
							| 12 | 6 11 | bitr4d |  |-  ( ph -> ( [ C ] R F D <-> E. x e. X ( C R x /\ D = A ) ) ) |