Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
|- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
2 |
|
qlift.2 |
|- ( ( ph /\ x e. X ) -> A e. Y ) |
3 |
|
qlift.3 |
|- ( ph -> R Er X ) |
4 |
|
qlift.4 |
|- ( ph -> X e. V ) |
5 |
1 2 3 4
|
qliftlem |
|- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
6 |
1 5 2
|
fliftf |
|- ( ph -> ( Fun F <-> F : ran ( x e. X |-> [ x ] R ) --> Y ) ) |
7 |
|
df-qs |
|- ( X /. R ) = { y | E. x e. X y = [ x ] R } |
8 |
|
eqid |
|- ( x e. X |-> [ x ] R ) = ( x e. X |-> [ x ] R ) |
9 |
8
|
rnmpt |
|- ran ( x e. X |-> [ x ] R ) = { y | E. x e. X y = [ x ] R } |
10 |
7 9
|
eqtr4i |
|- ( X /. R ) = ran ( x e. X |-> [ x ] R ) |
11 |
10
|
a1i |
|- ( ph -> ( X /. R ) = ran ( x e. X |-> [ x ] R ) ) |
12 |
11
|
feq2d |
|- ( ph -> ( F : ( X /. R ) --> Y <-> F : ran ( x e. X |-> [ x ] R ) --> Y ) ) |
13 |
6 12
|
bitr4d |
|- ( ph -> ( Fun F <-> F : ( X /. R ) --> Y ) ) |