Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
|- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
2 |
|
qlift.2 |
|- ( ( ph /\ x e. X ) -> A e. Y ) |
3 |
|
qlift.3 |
|- ( ph -> R Er X ) |
4 |
|
qlift.4 |
|- ( ph -> X e. V ) |
5 |
|
qliftfun.4 |
|- ( x = y -> A = B ) |
6 |
1 2 3 4
|
qliftlem |
|- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
7 |
|
eceq1 |
|- ( x = y -> [ x ] R = [ y ] R ) |
8 |
1 6 2 7 5
|
fliftfun |
|- ( ph -> ( Fun F <-> A. x e. X A. y e. X ( [ x ] R = [ y ] R -> A = B ) ) ) |
9 |
3
|
adantr |
|- ( ( ph /\ x R y ) -> R Er X ) |
10 |
|
simpr |
|- ( ( ph /\ x R y ) -> x R y ) |
11 |
9 10
|
ercl |
|- ( ( ph /\ x R y ) -> x e. X ) |
12 |
9 10
|
ercl2 |
|- ( ( ph /\ x R y ) -> y e. X ) |
13 |
11 12
|
jca |
|- ( ( ph /\ x R y ) -> ( x e. X /\ y e. X ) ) |
14 |
13
|
ex |
|- ( ph -> ( x R y -> ( x e. X /\ y e. X ) ) ) |
15 |
14
|
pm4.71rd |
|- ( ph -> ( x R y <-> ( ( x e. X /\ y e. X ) /\ x R y ) ) ) |
16 |
3
|
adantr |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> R Er X ) |
17 |
|
simprl |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
18 |
16 17
|
erth |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x R y <-> [ x ] R = [ y ] R ) ) |
19 |
18
|
pm5.32da |
|- ( ph -> ( ( ( x e. X /\ y e. X ) /\ x R y ) <-> ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) ) ) |
20 |
15 19
|
bitrd |
|- ( ph -> ( x R y <-> ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) ) ) |
21 |
20
|
imbi1d |
|- ( ph -> ( ( x R y -> A = B ) <-> ( ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) -> A = B ) ) ) |
22 |
|
impexp |
|- ( ( ( ( x e. X /\ y e. X ) /\ [ x ] R = [ y ] R ) -> A = B ) <-> ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) |
23 |
21 22
|
bitrdi |
|- ( ph -> ( ( x R y -> A = B ) <-> ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) ) |
24 |
23
|
2albidv |
|- ( ph -> ( A. x A. y ( x R y -> A = B ) <-> A. x A. y ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) ) |
25 |
|
r2al |
|- ( A. x e. X A. y e. X ( [ x ] R = [ y ] R -> A = B ) <-> A. x A. y ( ( x e. X /\ y e. X ) -> ( [ x ] R = [ y ] R -> A = B ) ) ) |
26 |
24 25
|
bitr4di |
|- ( ph -> ( A. x A. y ( x R y -> A = B ) <-> A. x e. X A. y e. X ( [ x ] R = [ y ] R -> A = B ) ) ) |
27 |
8 26
|
bitr4d |
|- ( ph -> ( Fun F <-> A. x A. y ( x R y -> A = B ) ) ) |