Metamath Proof Explorer


Theorem qliftfund

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1
|- F = ran ( x e. X |-> <. [ x ] R , A >. )
qlift.2
|- ( ( ph /\ x e. X ) -> A e. Y )
qlift.3
|- ( ph -> R Er X )
qlift.4
|- ( ph -> X e. V )
qliftfun.4
|- ( x = y -> A = B )
qliftfund.6
|- ( ( ph /\ x R y ) -> A = B )
Assertion qliftfund
|- ( ph -> Fun F )

Proof

Step Hyp Ref Expression
1 qlift.1
 |-  F = ran ( x e. X |-> <. [ x ] R , A >. )
2 qlift.2
 |-  ( ( ph /\ x e. X ) -> A e. Y )
3 qlift.3
 |-  ( ph -> R Er X )
4 qlift.4
 |-  ( ph -> X e. V )
5 qliftfun.4
 |-  ( x = y -> A = B )
6 qliftfund.6
 |-  ( ( ph /\ x R y ) -> A = B )
7 6 ex
 |-  ( ph -> ( x R y -> A = B ) )
8 7 alrimivv
 |-  ( ph -> A. x A. y ( x R y -> A = B ) )
9 1 2 3 4 5 qliftfun
 |-  ( ph -> ( Fun F <-> A. x A. y ( x R y -> A = B ) ) )
10 8 9 mpbird
 |-  ( ph -> Fun F )