Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
qlift.3 | |- ( ph -> R Er X ) |
||
qlift.4 | |- ( ph -> X e. V ) |
||
qliftfun.4 | |- ( x = y -> A = B ) |
||
qliftfund.6 | |- ( ( ph /\ x R y ) -> A = B ) |
||
Assertion | qliftfund | |- ( ph -> Fun F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
3 | qlift.3 | |- ( ph -> R Er X ) |
|
4 | qlift.4 | |- ( ph -> X e. V ) |
|
5 | qliftfun.4 | |- ( x = y -> A = B ) |
|
6 | qliftfund.6 | |- ( ( ph /\ x R y ) -> A = B ) |
|
7 | 6 | ex | |- ( ph -> ( x R y -> A = B ) ) |
8 | 7 | alrimivv | |- ( ph -> A. x A. y ( x R y -> A = B ) ) |
9 | 1 2 3 4 5 | qliftfun | |- ( ph -> ( Fun F <-> A. x A. y ( x R y -> A = B ) ) ) |
10 | 8 9 | mpbird | |- ( ph -> Fun F ) |